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A B S T R A C T

Small craters of the lunar maria are observed to be in a state of equilibrium, in which the rate of production of
new craters is, on average, equal to the rate of destruction of old craters. Crater counts of multiple lunar terrains
over decades consistently show that the equilibrium cumulative size-frequency distribution (SFD) per unit area
of small craters of radius > r is proportional r−2, and that the total crater density is a few percent of so-called
geometric saturation, which is the maximum theoretical packing density of circular features. While it has long
been known that the primary crater destruction mechanism for these small craters is steady diffusive de-
gradation, there are few quantitative constraints on the processes that determine the degradation rate of meter to
kilometer scale lunar surface features. Here we combine analytical modeling with a Monte Carlo landscape
evolution code known as the Cratered Terrain Evolution Model to place constraints on which processes control
the observed equilibrium size-frequency distribution for small craters. We find that the impacts by small distal
ejecta fragments, distributed in spatially heterogeneous rays, is the largest contributor to the diffusive de-
gradation which controls the equilibrium SFD of small craters. Other degradation or crater removal mechanisms,
such cookie cutting, ejecta burial, seismic shaking, and micrometeoroid bombardment, likely contribute very
little to the diffusive topographic degradation of the lunar maria at the meter scale and larger.

1. Introduction

Most of the landscapes of Earth's Moon are dominated by impact
craters. The cratered surfaces of the Moon are ideal locations in the
solar system for studying the processes by which impact craters shape
planetary landscapes. Lunar crater counts that have been calibrated
with radiometric dates of samples from associated surface units are a
primary tool for dating planetary surfaces across the solar system (e.g.
Neukum et al., 2001). If the rate of crater production as a function of
crater size is known for a planetary surface, then there should be a
direct correlation between the observed number of craters (as a func-
tion of crater size) and the exposure age of the surface (Kreiter, 1960;
Öpik, 1960; Shoemaker et al., 1963). However, as the cratered surface
evolves, the correlation between crater counts and surface age breaks
down. Eventually, crater degradation processes cause countable craters
to be destroyed at the same average rate that new craters of the same
size are produced, and the number of countable craters reaches an

equilibrium (Gault, 1970; Shoemaker et al., 1969).
Gault (1970) conducted a foundational experimental study on crater

equilibrium, and numerous subsequent studies have addressed different
aspects of the equilibrium phenomenon with both observations and
modeling (Chapman and McKinnon, 1986; Hartmann, 1984; Hartmann
and Gaskell, 1997; Hirabayashi et al., 2017; Richardson, 2009;
Woronow, 1985, 1977a, 1977b; Xiao and Werner, 2015). Despite half a
century of work on the subject, there remains little understanding of
what physical processes determine, in a quantitative way, the observed
equilibrium crater size-frequency distribution (SFD) of small lunar
craters. Crater equilibrium may by controlled by different processes on
different planets and scales. In this paper, we will only focus on one
particular type of equilibrium that is seen in populations of small simple
craters throughout the lunar maria, which was also the subject of the
Gault (1970) experimental study. Our goal is to develop a model that
quantifies how the crater production population SFD, and the impact-
related processes involved in the formation of each individual crater,
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contribute to the observed equilibrium SFD. Before we discuss the ob-
servational constraints on the type of equilibrium found in populations
of small simple craters of the lunar maria, in the next section we will
clearly define the basic terms that we use throughout the work.

1.1. Definitions of the equilibrium, geometric saturation, and production
SFDs

The terms “equilibrium,” “saturation,” and “saturation equilibrium”
have been defined in different ways by different authors (Basaltic
Volcanism Study Project, 1981; Gault, 1970; Hartmann, 1984; Melosh,
1989; Woronow, 1977a). In this work, we use the terms “geometric
saturation” and “equilibrium” as defined in Melosh (1989) (see also
chapter 6 of Melosh, 2011). We use “equilibrium” to refer to the state of
a surface at which the formation of a new crater is accompanied, on
average, by the obliteration of an old crater. When craters are in an
equilibrium state, the production of each new crater is correlated in
time with the destruction of (on average) one old one of the same size
or larger. It is not necessary for there to be a causal relationship be-
tween the formation of one new crater and the destruction of one old
crater of the same size. The equilibrium crater distribution was also
called the “steady-state distribution” in the Apollo-era literature (e.g.
Shoemaker et al., 1969)

Geometric saturation, as defined by Melosh (1989), is a purely
mathematical construct that describes the maximum number density of
circular features that could be packed onto a two-dimensional surface.
The definitions of equilibrium and geometric saturations that we adopt
for this work are based on the original terminology used by Gault
(1970), with the only difference being that Melosh (1989) added
“geometric” as a qualifier to what Gault simply called “saturation.” We
will quantify each of these definitions shortly, but for context we will
first compare them with other terminology used in the literature.

Some authors use the terms “equilibrium” and “saturation” to refer
to the specific processes that control the removal or degradation of old
craters. Under these process-dependent definitions, “saturation” is used
when crater removal is driven predominantly by impact-related phe-
nomena, and “equilibrium” is used when crater removal could poten-
tially include both impact-related processes and non-impact related
processes, such as wind erosion or volcanic infill. For instance,
Chapman and Jones (1977) defined “saturation equilibrium” to mean a
situation in which only impact-related processes are involved in the
obliteration of craters obliteration, whereas “equilibrium” was a more
general term for a surface affected by either impact or non-impact
processes.

Hartmann (1984) used the term “saturation equilibrium” in the
same way as defined by Chapman and Jones, although Chapter 8 of
Basaltic Volcanism Study Project (1981), which was written by a team
led by Hartmann, referred to this same phenomenon as “empirical sa-
turation.” The same chapter also defines the terms “cookie-cutter sa-
turation,” which is the situation when the only crater obliteration
process is direct overlap. We note in the case of “cookie-cutter satura-
tion” that the destruction of an old crater is directly caused by the
formation of a new crater of the same size, even though in general the
condition of equilibrium does not require this causal relationship. The
term “complete geometric saturation” also refers to what Melosh (1989)
calls “geometric saturation” and Gault (1970) calls simply “saturation.”

The various processes involved are not always well constrained or
defined, and the terms “equilibrium” and “saturation” are not always
defined in a consistent manner. For instance, Gault (1970), and also
Marcus (1970), defined “saturation” and “equilibrium” to mean two
very different things. In Gault's terminology “equilibrium” is a dyna-
mical phenomenon, in which craters are steadily degraded until they
are no longer observable over some finite time, and in that time some
number of craters of the same size are generated. It is this competition
between the rate of degradation and the rate of formation which sets
the equilibrium crater density, regardless of how many circular craters

can fit on the surface. “Saturation,” in contrast, is defined purely on the
basis of geometry, as it quantifies how many craters could potentially
“fit” onto a surface.

Chapman and Jones (1977) introduced the term “saturation equi-
librium” with references to the studies of Gault (1970) and Marcus
(1970), which were studying equilibrium. However, Chapman and
Jones then define “saturation equilibrium” as the maximum number of
craters that can “fit” on a surface before they become destroyed by
subsequent craters or covered in ejecta blankets. As Gault defined it,
equilibrium was a consequence of a balance between the rates of pro-
duction and destruction, not as a result of the finite geometry of the
surface. While this difference in definitions is somewhat subtle, it is this
mixing together of the two distinct ideas of equilibrium with the geo-
metry-based construct of saturation into the amalgamation “saturation
equilibrium” which has no doubt been responsible for a great deal of
confusion.

The study of Marcus (1970) also did not ascribe equilibrium to
geometry, but instead conceptualized it as Gault did as a balance be-
tween production and destruction. However, Marcus concluded that the
dominant degradation mechanism for small lunar craters was ballistic
sedimentation, which he modeled as a diffusive degradation process
using the analytical model developed by Soderblom (1970), that we
will discuss in more detail in Section 1.3. We note that Marcus (1970)
defined “ballistic sedimentation” as both an energetic process that in-
volved diffusive degradation of pre-existing craters and as a low energy
“filling-in,” or burial, by ejecta.

A further complication in defining and understanding equilibrium is
that the way in which equilibrium manifests itself on a given surface
depends strongly on the SFD of the crater production population. For
the craters relevant to our study, we can model production function as a
power law of the form:

=>n n Xr ,p r p, ,1 (1)

where, np, 1 is a coefficient that gives the cumulative number of craters
larger than 1 m in radius per m2 of surface area, and η is the slope of the
production function. We note briefly that, while it is more common to
express crater size as the diameter of the crater rim (D), in this work we
use crater radius (r), as it simplifies the analytical expressions we de-
velop later. In addition, we refer the exponents of power law SFDs as
their “slopes,” because power law functions appear as straight lines
when plotted log-log. Crater SFDs always have a negative exponent, but
we define the slope parameter of the production function and other
power laws using the positive value for mathematical convenience.

The dimensionless parameter X(t) was introduced in Hirabayashi
et al. (2017), and it scales the production SFD by the total accumulated
crater density of the surface being studied. We do this in order to re-
move any explicit dependence on time, because we are primarily in-
terested in how impact-related processes influence the equilibrium SFD
and we assume that any impact-related crater degradation processes
occur at rate proportional to the crater formation rate. We define X such
that X= 0 represents the time when the surface under consideration
was last initially free of craters, and X= 1 represents the present day.
We can also write a dimensionless cratering rate as =>n n r( ) .d

dX p r p, ,1
The equilibrium SFD is also commonly written as a power law,

which we define as:

=>n n r ,eq r eq, ,1 (2)

where neq, 1 is a coefficient that gives the cumulative number of craters
larger than 1 m in radius per m2 of surface area, and β is the equilibrium
slope. In this work, we focus on a particular form of equilibrium that
occurs for so-called “steep-sloped” production SFDs, for which η > 2.
For surfaces bombarded by steep-sloped production populations, the
equilibrium SFD has a slope β≈ 2. Fig. 1 shows an illustration of how
the observed crater counts evolve with time for the case where η > 2
(similar illustrations appear in Gault, 1970; Melosh, 2011; 1989). At the
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earlier time, X1, the production function intersects the empirical equi-
librium line at r= 10 m, and the crater counts (solid line) transition
from the production line to the equilibrium line. At the later time, X2,
the transition occurs at r= 100 m.

While not the subject of this work, we note that when the slope of
the crater production function is shallow (η < 2) the situation is more
complicated. It has been suggested using both numerical methods
(Woronow, 1978) and analytical methods (Chapman and McKinnon,
1986; Hirabayashi et al., 2017; Richardson, 2009) that the production
function slope is preserved in a quasi-equilibrium. In addition, the
production cumulative SFD may not have a single slope and may have
segments where η < 2 over some range of crater sizes and η > 2 over
others. This kind of complex SFD is seen in the lunar production
function where the SFD is shallow ∼2 km < r < ∼ 30 km and then
steep for larger craters and basins (Neukum et al., 2001). Multi-sloped
production populations may reach a quasi-equilibrium similar to the
η < 2 case that preserves the shape of the production SFD even in
equilibrium (Chapman and McKinnon, 1986; Richardson, 2009;
Woronow, 1978; 1977a).

Equilibrium of the type that develops in steep-sloped crater pro-
duction functions (η > 2), as illustrated in Fig. 1 were first noted in
early imagery of the lunar surface (Moore, 1964; Shoemaker, 1966;
Shoemaker et al., 1969) and were the subject of the experimental study
of Gault (1970). Because of a combination of the shape of the lunar
production function and the age of the lunar maria, the r ≲ 100 m po-
pulation of maria craters show this steep-sloped equilibrium very
clearly. From the Neukum Production Function (NPF), which is a
common lunar crater production function summarized in Neukum et al.
(2001), the production function slope is steep (η ≈ 3) for craters with
r ≲ 2 km. Nearly all lunar maria formed < 4.0 Gy ago (Hiesinger et al.,
2010), and in that time only r≲ 500 m craters from the steep-sloped
branch of the production function are expected to be above the equi-
librium density.

In our notation system the cumulative SFD of geometric saturation
is defined to be ngsat, > r = 0.385r−2 (Gault, 1970). The slope value of 2

for the geometric saturation SFD has some important implications that
are relevant to understanding observed crater SFDs. Because we define
cumulative SFDs as number of craters per unit area, a SFD slope of 2
means that the coefficient of the power law is dimensionless. This is a
consequence of what is referred to as “geometric similarity.” Objects
that exhibit geometric similarity are those that have the same shape at
all sizes. Simple lunar craters exhibit a high degree of geometric simi-
larity, and it can be difficult to estimate the scale of images of cratered
surfaces with SFD slopes of 2. We will investigate the importance of
geometric similarity further as we develop our models later.

1.2. Observational constraints on the equilibrium SFD for small lunar
craters

Despite the degree of subjectivity that is inherent in crater counting
(see for instance Robbins et al., 2014), many different researchers have
reached broadly similar conclusions about the equilibrium seen in po-
pulations of small lunar craters. Gault (1970) estimated from his ex-
perimental results that the equilibrium crater density falls within
1 − 10% of geometric saturation at all crater sizes, which gives an
empirical estimate of the line of neq, 1 = 0.021 ± 0.017 and β= 2.
Xiao and Werner (2015) counted crater populations on multiple lunar
terrains, and found that on terrains where equilibrium occurs at
r < 500 m, equilibrium was between 0.69 − 3.9% of geometric sa-
turation (neq, 1 = 0.009 ± 0.006), which is lower than that estimated
by Gault (1970); however, they found that the equilibrium slope was
consistently β~2 across multiple terrains. Hartmann (1984) used ob-
served crater densities across both maria and highlands terrains to
construct a similar, though somewhat shallower empirical equilibrium
SFD, defined in our notation system as neq, 1 = 0.0064 m−0.17 and
β= 1.83.

An example of equilibrium behavior on a natural lunar surface is
shown in Fig. 2. The points in Fig. 2 shows crater counts of the Apollo
15 landing site counted by co-author Caleb Fassett from the Robbins
et al. (2014) crater counter comparison study. In the Robbins et al.
study, multiple different human crater counters, both professional and
non-professional, were tasked with counting craters on two different
images of the lunar surface, and the results were compared to quantify
the variability in the resulting data. The Apollo 15 site in Mare Imbrium
was one of the terrains studied by Robbins et al. (called the NAC image
in the study, as it was ∼0.5 m/pix imagery taken by the Narrow Angle
Camera of the Lunar Reconnaissance Orbiter).

We fit two power law functions for the 10 m < r < 50 m craters
from Fassett's Apollo 15 crater counts, which are in equilibrium. In the
first fit, we constrained β= 2 (i.e. we impose geometric similarity) and
found neq, 1 = 0.0084, which is 2.2% of geometric saturation. We call
this Fit 1 and it is plotted along with the data in Fig. 2b. A slightly more
accurate fit to the equilibrium SFD is where β= 1.8 and neq, 1 = 0.0051
m−0.2, which we call Fit 2 and show in Fig. 2b. These fits are very
similar to each other, and Fit 2 is very close to the empirical equilibrium
line defined by Hartmann (1984), using much larger craters on the
lunar highlands.

We chose to use co-author Fassett's crater counts of the Apollo 15
site as a major constraint in this work primarily because it is one of the
highest quality modern crater counts of an equilibrium SFD available.
However, we can demonstrate that our choice of this data as a con-
straint is well-justified for other reasons. Crater counts are influenced
by human factors, and Robbins et al. (2014) found that the overall
crater density obtained by different individual crater counters for the
Apollo 15 site varied by slightly more than a factor of 2. Co-author
Fassett's counts for this site were close to the median value of the en-
semble, and so can be considered representative of the site. The equi-
librium SFD from our Fit 1 (using Fassett's counts) are 2.2% of geo-
metric saturation, which is well within the range of typical equilibrium
crater populations of the lunar maria (Xiao and Werner, 2015).

Robbins et al. (2014) showed that there was much less variation in
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Fig. 1. An illustration of the time evolution of the crater count cumulative size-
frequency distribution for a steep-sloped (η > 2) production function. The
long-dash line (dark orange) shows the geometric saturation SFD defined by
Gault (1970) as ngsat, > r = 0.385 r−2. The short dash line (blue) shows an
equilibrium SFD that is ∼2% geometric saturation. The dash-dot dark lines
(teal) show the production function with a slope of η = 3.2 at two points in
dimensionless time, X1, and X2. The solid black lines show the crater counts at
times X1, and X2. At time X1 the production function intersects the equilibrium
SFD at r= 10 m, and later at X2 the transition occurs at r= 100 m (similar
illustrations appear in Gault, 1970; Melosh, 2011; 1989). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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the slopes of the SFDs between researchers than there was in the overall
crater density. In other words, human factors appear to influence neq, 1

more strongly than β. The slope value of β≈ 2 of our comparison crater
counts is also consistent with other slope values obtained by Gault
(1970), Hartmann (1984), and Xiao and Werner (2015) on a variety of
different lunar surfaces, which suggest that the equilibrium slope of
β= 2 is an important constraint on equilibrium that is not heavily in-
fluence by human factors.

The dash-dot line in Fig. 2 shows the total production obtained from
the NPF for the estimated nominal crater density of the Apollo 15
landing site given by Robbins et al. (2014) of nD> 1 km = 5500 per 106

km2 (which corresponds to an absolute age in the Neukum chronology
of 3.54 Gy). We fit a power law function to the NPF for r < 500 m
craters and find that np, 1 = 4.3 m1.2 and η = 3.2. From our definition of
the dimensionless time parameter, X= 0 is equivalent to 3.54 Gy be-
fore present in the NPF chronology, and X= 1 corresponds to the
present-day.

1.3. Small crater equilibrium is a consequence of topographic diffusion

The development of small crater equilibrium on the lunar surface is
fundamentally a dynamic phenomenon in which the production of new
craters and degradation of old craters are in constant competition over
billions of years of exposure to an impact flux. In order to understand
why the crater count SFD of small lunar craters follows the time evo-
lution shown in Fig. 1, and why the equilibrium SFD of small crater
populations found all across the lunar surface appears so consistently as
a power law given by Eq. (2), with β≈ 2 and neq, 1 a few % of geometric
saturation, it is first important to establish a model for how old craters
are degraded over time.

Modeling and observations of the morphology of lunar surface
features have shown that degradation of lunar landforms is character-
ized by linear topographic diffusion, or linear diffusive creep (Craddock
and Howard, 2000; Fassett and Thomson, 2014; Ross, 1968; Soderblom,
1970). The basic principle is similar to that of soil creep, which has
been studied in terms of hillslope in terrestrial environments. (e.g.

Culling, 1960; Pelletier, 2008). Landforms undergoing this type of de-
gradation have a characteristically “soft” texture, which was how de-
graded small craters were described when they were first imaged from
spacecraft (e.g. Trask, 1967).

The studies of Ross (1968) and Soderblom (1970) established the
framework for understanding one of the ways that the formation of an
impact crater can lead to linear topographic diffusion of pre-existing
craters. A fresh simple crater is a bowl-shaped depression with a raised
rim, and therefore the walls and rim represent local sloped surfaces.
Each small crater that subsequently forms on the sloped walls or rim of
the larger crater transports some amount of material in its ejecta either
upslope or downslope. Due to the mechanics of ejecta transport, more
material will be transported at greater distance in the downslope di-
rection relative to the upslope direction. Each small impact that forms
inside a pre-existing large crater will induce slope-dependent mass
displacement within the large crater, and as long as the length scale of
the displacements are small relative to the size of the large crater, then
its degradation over time can be modeled as linear topographic diffu-
sion.

In a surface that is undergoing linear topographic diffusion, the
evolution of the landscape can be modeled using the linear diffusion
equation:

= +h
t x

h
x y

h
y

,
(3)

where h(x,y) is the elevation of the surface at spatial coordinates given
by x and y, and κ is called the topographic diffusivity, which has units
m2/y. Diffusivity can be thought of as the “efficiency” or “effectiveness”
of the diffusion process. In this form of the diffusion equation, the
diffusivity κ can vary spatially as κ = f(x,y). However, in many situa-
tions, κ can be assumed to be a constant over the surface or surface
feature of interest, and thus Eq. (3) may be written in the much more
compact form:

=h
t

h,2
(4)
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landing site in Mare Imbrium was used in the crater count study of Robbins et al. (2014), and is a typical example of a surface in small crater equilibrium. B) The
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The above linear diffusion model assumes that the diffusivity κ does
not depend on h. Nonlinear diffusion could occur if local slopes are very
high (Roering et al., 1999). Advective, rather than diffusive, mass
transport is observed in steep walls of relatively fresh lunar craters (e.g.
Senthil Kumar et al., 2013; Xiao et al., 2013). However, simple lunar
craters only have steep enough walls for these nonlinear processes to be
effective for a relatively small amount of their total lifetime, and as
shown in Fig. 2A, the majority of lunar craters of our comparison data
set are very shallow. We therefore assume that nonlinear effects are
negligible.

Although the topographic degradation given by Eq. (4) depends on
time, it is more useful for our analysis to remove time in favor of some
measure of total number of craters that is independent of any possible
time variability in the rate of crater production. If the source of diffu-
sivity is related to the impacts themselves, as in the model of Soderblom
(1970), then the rate of diffusive degradation should be proportional
the rate of crater production, and therefore the total accumulated
number of impacts is a more fundamental parameter instead of elapsed
time. We can remove time by defining a quantity called the degradation
state, K which is defined as:

=K t t( )d ,
t

t

0 (5)

where t0 is the onset time for a diffusive degradation process of diffu-
sivity κ(t). Using this definition, a formal variable change applied to Eq.
(3) gives:

=h
K

h.2
(6)

Eq. (6) is still a form of diffusion equation, however the explicit
dependence on time has been replaced by a dependence on the de-
gradation state, K, which has units of m2. Because the change in ele-
vation, h, for a given change in degradation state, K, depends on the
topographic curvature, ∇2h, the effect of diffusion on a particular
landform depends on that landform's shape. Given an amount of ac-
cumulated K, features that change elevation over short length scales
(i.e. small craters) will appear more degraded than those that change
elevation over long length scales (i.e. large craters). The degradation
state of a degraded topographic feature can in principle be obtained
from measurements of its topography relative to its original, pre-de-
graded topography (Craddock and Howard, 2000; Fassett and
Thomson, 2014).

The classical diffusion model has been used subsequently to un-
derstand how landscapes on airless bodies, such as the Moon (Craddock
and Howard, 2000; Fassett and Thomson, 2014) and Mercury (Fassett
et al., 2017), evolve due to impact cratering. The importance of diffu-
sive downslope creep induced by small impacts has also been re-
cognized as being related to the observed empirical equilibrium of
small craters (Craddock and Howard, 2000; Fassett and Thomson,
2014; Florenskiy et al., 1977; Richardson, 2009; Richardson et al.,
2005; Rosenburg et al., 2015; Ross, 1968; Soderblom, 1970). We de-
monstrate the connection between (linear) diffusive degradation and
the phenomena of crater equilibrium in Fig. 3.

Fig. 3 shows an illustration of the development of equilibrium on
the Apollo 15 site, shown in Fig. 2. Panel A shows a subsection of the
image of the site. This image shows a terrain with craters of multiple
different sizes. Each newly-formed crater is initially a bowl-shaped to-
pographic depression with a raised rim. Subsequent impact-driven
diffusive processes, which can be modeled as Eq. (6), cause the rim of
the crater to flatten and the inner bowl to fill in and become shallower
as it degrades over time. The craters shown in Fig. 3A show a variety of
degradation states.

We have highlighted a subset of the counted craters in the figure.
The solid circles show the four craters with 30 m < r < 40 m in this
section that were counted by co-author Fassett in Robbins et al. (2014).
Comparing this size range with the crater counts in Fig. 2 shows that

these four craters are at the equilibrium density. The dashed circle
shows a feature that could potentially be a highly degraded crater of the
same size but was not counted. Panels BeF illustrate a simplified model
for the cratering history of this terrain. In our simplified model a single
crater of radii between 30 − 40 m forms in each panel in the sequence,
and the shading (dark to light) represents the degradation state, K, of
the crater. In the first model panel (B), the first crater of the sequence
forms, and has no accumulated degradation, which we represent by the
black shading of the circle. In each subsequent panel (CeF), a single
additional crater is added to the surface. Every old crater accumulates
some amount of degradation, which we represent with the shading.
Lighter shading corresponds to higher degrees of degradation. As cra-
ters degrade, they become too degraded to be confidently identified by
a human crater counter. This maximum degradation state at which a
crater is visible we designate Kv. In this example, by the time the fifth
crater of the sequence has formed, the first crater has reached a de-
gradation state of Kv, and therefore has become too degraded to be
counted (dashed circle). At this point the total number of craters re-
mains constant, thus the craters are in equilibrium.

The example shown in Fig. 3 also demonstrates why we feel it is
important to distinguish between “equilibrium” crater densities and
“saturation” (or specifically “geometric saturation”) crater densities.
From all appearances, the surface shown in Fig. 3A contains abundant
room for more craters of equivalent size to the four that are circled, and
so the surface does not appear to be “saturated” with craters. Instead,
the diffusive processes driving crater degradation on this surface op-
erate at a rate such that 30 − 40 m radius craters become too degraded
to be identified in the time required to generate four craters, and so the
total number of craters equilibrates at four.

1.4. Crater degradation processes

As we illustrated in Fig. 3, the equilibrium crater SFD for small lunar
craters is determined primarily by processes that result in diffusive
degradation. In Section 2 we will develop an analytical model for
equilibrium using linear topographic diffusion, Eq. (6), as a foundation.
Before we develop our model, we will first discuss the processes in-
volved in cratering that lead to degradation of the surface, and a review
brief of previous research on modeling the problem of equilibrium
cratering and lunar landscape evolution.

The formation of a hypervelocity impact crater is a highly energetic
event, and there are a number of resulting processes that contribute to
the degradation and obliteration of the pre-existing craters. We illus-
trate some of the possible mechanisms for degradation in Fig. 4A, which
includes cookie-cutting, ejecta burial, seismic shaking, secondary cra-
ters, preferential downslope deposition of proximal ejecta, and en-
ergetic ejecta deposition in distal rays and secondaries. Each of these
processes affect the terrain in a different way over different regions
around the point of impact and is worth discussing in more detail.

1.4.1. Cookie cutting
The simplest way that new craters degrade and remove old craters is

by cookie cutting. The effect of cookie cutting is to completely render
uncountable any old craters whose rims were fully within the rim of the
new crater, and so is an important process when a large old crater
obliterates all or a portion of any smaller craters that it overlaps (see
Fig. 1 of Minton et al., 2015 for an illustration of this process).

1.4.2. Low energy ejecta deposition (ejecta burial)
Material excavated from within the crater rim is deposited as ejecta

in the surrounding region in the ejecta blanket. Proximal to the crater,
within a region bounded by 2 − 3× the crater radius, the ejecta forms a
continuous blanket with a thickness h as a function of radial distance d
and crater radius r given by h= hrim(d/r)−3, where hrim is the thickness
of the ejecta at the rim (McGetchin et al., 1973; Moore et al., 1974;
Sharpton, 2014). The exponent of the thickness profile of the proximal
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ejecta blanket was determined empirically over a large range of crater
sizes, from r= 0.1 m laboratory scale craters up to the r= 593 m
Meteor Crater in Arizona (McGetchin et al., 1973). Fassett et al. (2011)
showed that the ejecta thickness profile of McGetchin et al. (1973) was
a reasonable approximation even for the r= 465 km Orientale basin,
which is one of the largest lunar basins. For r= 0.1 − 100 m craters,
hrim = 0.04r (McGetchin et al., 1973).

1.4.3. Diffusive degradation by small impacts (sandblasting)
The formation of proximal ejecta not only buries pre-exiting topo-

graphy, it also contributes to degradation of the surface by inducing
slope-dependent mass transport. Soderblom (1970) developed a simple
model based on the idea that the ejecta blanket of a crater that is
produced on a slope is asymmetric, with more material preferentially

deposited downslope than upslope. This is due to the fact that the ejecta
is launched from a conical ejecta curtain that emerges perpendicular to
the local surface normal of the impact site. When small craters impact
into the rims and walls of large craters, the preferential downslope
deposition of their proximal ejecta can induce diffusive degradation of
the large craters. This is equivalent to sandblasting (see Fig. 2 of Minton
et al., 2015 for an illustration of this process).

1.4.4. High energy ejecta deposition (ballistic sedimentation and secondary
cratering)

Unlike the relatively spatially uniform blanketing by proximal
ejecta, the distal ejecta of an impact crater consists of a spatially het-
erogeneous population of energetic ejecta fragments that produce
crater rays, secondary craters, and induce mass movement and mixing
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Fig. 3. An illustration of the development of crater
count equilibrium. Panel A shows a subsection of the
image in Fig. 2A. The solid circles show the four
craters with 30 m < r < 40 m in this section that
were counted by co-author Fassett in Robbins et al.
(2014), which are in equilibrium (see Fig. 2B). The
dashed circle shows a feature that could potentially
be a highly degraded crater of the same size but was
not counted. Panels BeF illustrate a simplified
model for the cratering history of this terrain. Each
panel in the sequence represents the surface after the
accumulation of each 30 m < r < 40 m crater in
this size range. The shading represents degradation
state, where Kv is the maximum degradation state a
crater can have before it is no longer visible. B) The
first crater of the sequence forms and has no accu-
mulated degradation. C-E) As each new crater forms,
the pre-existing craters accumulate degradation. E)
When the fifth crater forms, the first crater has be-
come too degraded to be counted (dashed circle),
and so the total number of craters remains constant,
thus the craters are in equilibrium.
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Fig. 4. A) A schematic diagram illustrating the spatially heterogeneous nature of impact-driven degradation. In this diagram, several possible degradation processes
are shown that accompany the formation of each new crater of size r . Degradation processes illustrated include: cookie cutting within the crater rim (grey), low
energy deposition/ejecta burial by the proximal ejecta, which may be asymmetric due to the local slope (blue), high energy deposition of proximal ejecta in rays
(light red), field secondaries and secondary clusters (red-grey), and seismic shaking (teal). We approximate the degradation processes shown as a change in the
degradation state of the surface by the scalar field K r r( | / , )c , where ρ and ϕ are polar coordinates with respect to the crater center. B) For our analytical model, we
model the contribution to degradation given by K r r( | / , )c using a uniform, circular degradation region given by K r( )d over a region with radius f re (grey). The
uniform circular degradation contributes the same net average amount of degradation to the surface as K r r( | / , )c . (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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upon deposition in a process called ballistic sedimentation (Elliott et al.,
2018; Huang et al., 2017; Oberbeck, 1975). The formation of second-
aries in distal ejecta, whether in isolation, in clusters and chains, or as
part of distal rays (Elliott et al., 2018; Pieters et al., 1985), should
produce similar slope-dependent mass transport of proximal ejecta that
the primary proximal ejecta does. Therefore, energetic distal ejecta
deposition should lead to diffusive degradation by the same mechanism
as that developed by Soderblom (1970). Marcus (1970) identified bal-
listic sedimentation as the dominant process that degraded the small
lunar craters that were the subject of the study by Gault (1970).

1.4.5. Seismic shaking
Richardson et al. (2004) demonstrated that global seismic shaking

due to impacts could be responsible for destroying small craters on the
Near Earth Asteroid 433 Eros, as the equilibrium slope of craters on
Eros is much shallower than the β∼ 2 slope of standard empirical
equilibrium. Additionally, Richardson et al. (2005) showed that the
effectiveness of seismic shaking depended on the gravitational accel-
eration at the surface. They showed that for bodies with diameters
larger than 100 km, global seismic shaking became ineffective and
seismic shaking could only degrade craters locally for all but the very
largest impacts. For the Moon, (D= 3,474 km), seismic shaking by
impacts is expected to be far less effective at eroding craters than it is on
a body the size of 433 Eros (D= 17 km), which is supported by the
Fassett et al. (2011) results for crater degradation in the region sur-
rounding Orientale basin. Kreslavsky and Head (2012) showed that
seismic waves from Orientale formation caused an appreciable degree
of degradation on the surface, however an implication of the results of
Fassett et al. (2011) is the degradation of craters in the proximal ejecta
region of even the largest lunar basins is still dominated by ejecta burial
over seismic shaking. Therefore, seismic shaking is unlikely to be an
important process for setting the equilibrium SFD of lunar maria cra-
ters.

1.5. Previous work on modeling equilibrium

A successful model for equilibrium should quantify how much each
of the various crater degradation and removal processes discussed in
Section 1.4 contributes to setting the equilibrium SFD. Ross (1968)
developed an analytical model for crater degradation based on impacts
by smaller craters (see Section 1.4.3). Ross was modeling the general
problem of crater degradation, not the equilibrium problem specifi-
cally. He used the fact that the distribution of ejecta from craters on
sloped surfaces is asymmetric, with more mass deposited on the
downslope side than the upslope. He showed that this slope-dependent
mass asymmetry of small crater ejecta was an important process for the
degradation of r < 500 m lunar craters.

Soderblom (1970) later showed that the slope-dependent mass
asymmetry of Ross (1968) could be modeled with linear diffusion (see
Section 1.3), and investigated the problem of equilibrium. Soderblom
considered secondary craters in his model but concluded that a model
without secondaries fit the observed equilibrium SFD (which he termed
the “steady-state” distribution) better than one with secondaries.
Marcus (1970) also investigated the same problem as Soderblom with a
similar analytical model, and came to a somewhat different conclusion.
He noted that degraded small craters have much flatter floors than fresh
craters, and on this basis determined that low energy ejecta deposition
(see Section 1.4.2), which he termed a form of ballistic sedimentation,
was important in determining the equilibrium SFD. Though the analy-
tical models of both Soderblom (1970) and Marcus (1970) were so-
phisticated, and formed the basis of a later model by Hirabayashi et al.
(2017) as well the one we develop here, both models contained as-
sumptions that make it hard to use them to set quantitative constraints
on the role of secondaries and low energy ejecta deposition (see
Hirabayashi et al., 2017).

The analytical models Soderblom (1970), Marcus (1970),

Hirabayashi et al. (2017), and the models we will develop in Section 2
of this paper all represent the population of observable craters as a 1-D
SFD that evolves in time due to the production of new craters and the
degradation and removal of old craters. These kinds of models make a
simplifying assumption that the 3-D topography of the individual cra-
ters can be approximated as a single parameter that characterizes a
crater's visibility to a human crater counter. These models also assume
that SFD represents an average of the 2-D spatial distribution of craters
on the landscape.

The study of Gault (1970) is a unique experimental study of crater
equilibrium. In this study, Gault produced craters by firing projectiles of
various sizes into a 2.5 m × 2.5 m sandbox at NASA Ames Research
Center. He studied several different production SFDs, from shallow to
steep. Based on his experimental results, he concluded that in steep-
sloped SFDs, diffusive degradation by the numerous small projectiles in
combination with ballistic sedimentation was the dominant crater de-
gradation mode, though these conclusions were somewhat qualitative.

Many studies of crater equilibrium have employed numerical
models that represent the 2-D distribution of craters on the landscape.
Woronow pioneered the use of numerical methods to study equilibrium
cratering in late 1970s and early 1980s, using both Monte Carlo and
Markov Chain methods to model craters on 2-D surfaces (Woronow,
1985, 1978, 1977b, 1977a). Woronow's models represented as circular
features corresponding to the crater's rim and modeled how the for-
mation of new craters could remove or degrade the rims of pre-existing
craters. Similar 2-D Monte Carlo “circular rim” codes were also devel-
oped by both Chapman and McKinnon (1986) and Marchi et al. (2012).
Most of these studies were focused on the problem of understanding
equilibrium in large lunar craters and basins, where the production
function is not a simple power law and contains shallow (η < 2)
branches. However, Marchi et al. (2012) performed simulations of a
lunar maria case where η > 2 as a way of calibrating the code's ability
to reproduce the equilibrium SFD.

Unfortunately, due to the nature of these 2-D circular rim codes, it is
difficult to relate the results to the physical processes involved in the
diffusive degradation of lunar craters. For instance, the primary free
parameter in the code of Marchi et al. for generating the observed
equilibrium SFD of small lunar craters is a factor that determines
whether or not a crater of a given size can destroy the rim of a crater of
a larger size. That is, new craters of size >fr r can remove the rim of an
old crater of radius r. They found that f= 9 gave a match to the
equilibrium crater counts of the Sinus Medii mare by Gault (1970), but
it is not clear how this factor is related to physical processes involved in
crater degradation, such as those discussed above and illustrated in
Fig. 4A.

As shown in Fig. 3A, small lunar craters are degraded by steady
diffusive degradation that makes them shallower over time. In this
degradation mode, the entire crater is affected by degradation and it is
likely that the visibility of a crater involves both the rim and inner bowl
(Fassett and Thomson, 2014; Ross, 1968; Soderblom, 1970). Therefore,
2-D circular rim codes may have limited ability to model the processes
involved in setting the small crater equilibrium SFD. To model the
diffusive degradation of craters in the steep-sloped production function
regime (η > 2) regime, a 3-D landscape evolution code that models the
evolution of the circular depressions that defines craters on a landscape
has a strong advantage over a 2-D circular rim code.

The first 3-D landscape evolution code used to study crater equili-
brium was the GASKELL code, which was used in Hartmann and Gaskell
(1997). GASKELL generates three-dimensional digital elevation models
(DEM) of the simulated landscape. In Hartmann and Gaskell (1997), a
Monte Carlo cratering model was added to GASKELL that produced
realistic 3-D morphology of craters and their ejecta blankets on a DEM
that simulated a heavily cratered surface of Mars. For the Hartmann and
Gaskell study, the DEMs of the simulated cratered landscapes were
converted to simulated imagery and the simulated craters were counted
by human crater counters.
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Hartmann and Gaskell (1997) performed several simulations using
steep-sloped production SFDs. In some of their simulations they pro-
duced terrains with countable crater SFDs that significantly exceed the
observed equilibrium SFD, which is contradictory to observations of
natural surfaces. They proposed that this mismatch between simulation
results and observations could be solved if they were to include the
collective effects of small secondary craters that were below the re-
solution limit of the simulation. By including an ad-hoc model for this
effect, they were able to create crater SFDs that matched the observed
equilibrium SFD. However, Hartmann and Gaskell (1997) did not
quantify this sub-pixel degradation model. The study of Hartmann and
Gaskell was specifically about the cratered landscapes of Mars, where
fluvial erosion likely dominated the degradation of the ancient heavily
cratered terrains (Craddock et al., 2018). However, the study of
Hartmann and Gaskell (1997) should, in principle, be generalizable to
surfaces where fluvial effects are not important, such as the small lunar
maria craters.

Another 3-D landscape evolution model used to study equilibrium is
the Cratered Terrain Evolution Model (CTEM), which was used to study
the question of equilibrium of the large craters of the lunar highlands in
Richardson (2009). The CTEM code is similar to the GASKELL land-
scape evolution model of Hartmann and Gaskell (1997), but with a
number of important differences. Like GASKELL, CTEM produces DEMs
of simulated heavily cratered surfaces, but unlike GASKELL the craters
are counted automatically by the code, rather than manually. CTEM
also includes ejecta burial and seismic shaking models based on linear
topographic diffusion.

Richardson (2009) studied crater equilibrium on the large craters
and basins of the lunar highlands and reached broadly similar results as
Chapman and McKinnon (1986), which employed a 2-D circular rim
code. Both studies concluded that the heavily cratered lunar highlands
could be in an equilibrium condition and that the complex shape of the
crater count SFD of the lunar highlands could be attributed to the
complex shape of the production population.

However, both the design of the simulations and the state of the
CTEM code at the time of Richardson (2009) make it difficult to relate
its results to the underlying processes involved in setting the equili-
brium SFD. For instance, the automated crater counting algorithm used
in Richardson (2009) was not calibrated by a human crater counter.
The early version of CTEM also lacked a constrained model for the ef-
fects of sub-pixel cratering, just as the GASKELL code did. In addition,
the production SFD was artificially truncated in the Richardson (2009)
study such that no crater with a diameter larger than 50% of the do-
main size was produced. A number of improvements to CTEM were
implemented in a later study by Minton et al. (2015). Minton et al.
showed that the removal of the artificial truncation of the production
SFD for the lunar highlands lead to very different evolution of the lunar
highlands compared to what was shown in Richardson (2009). How-
ever, the study of Minton et al. (2015) did not directly address the
problem of crater equilibrium.

Observational studies of the topographic evolution of the lunar
landscape also have relevance to the small crater equilibrium problem.
Fassett and Thomson (2014) used observations of the topographic
profiles of simple lunar craters in the size range 400 m < r < 2500 m
to estimate the degradation rate of the lunar surface. They placed
constraints on the value of topographic diffusivity, given by the κ
parameter in Eq. (4), as a function of time for craters in their ob-
servational size range, but did not explicitly model the small crater
equilibrium SFD nor did they constrain the processes involved in de-
termining κ. Craddock and Howard (2000) developed a similar model
for linear topographic diffusion and applied it to the degradation of
lunar craters in the size range of 500 m < r < 1500 m. In that work,
they assumed that the dominant process by which craters in this size
range are degraded is micrometeoroid bombardment (e.g. the flux of
∼1 mm primary impactors).

In the following sections we will develop diffusion-based models of

small crater equilibrium. Our approach combines an analytical 1-D
model for the evolution of the observable crater SFD with a 3-D Monte
Carlo landscape evolution code. We first develop our analytical models
in Section 2. Our analytical models are similar to the a 1-D models of
Soderblom (1970), Marcus (1970), and Hirabayashi et al. (2017) in
which we represent the observable craters as an time-evolving SFD. In
Section 3 we will model the landscape using the CTEM code used in the
study of the lunar highlands equilibrium in Richardson (2009), with
added modifications introduced by Minton et al. (2015), Huang et al.
(2017), and in this work. Because CTEM represents the full 2-D spatial
distribution of craters on the landscape, as well as the 3-D morphology
of each individual craters, we will use it to test the robustness of the
assumptions inherent in the 1-D model analytical developed in Section
2. We will model several of the important processes in the degradation
and removal of craters, including as cookie-cutting, low energy ejecta
deposition (e.g. ejecta burial), high energy ejecta deposition (e.g. bal-
listic sedimentation and cratering by small secondaries), and bom-
bardment by primary micrometeoroids. Our goal is to investigate which
of the proposed impact-related processes are important in determining
the equilibrium SFD of small craters of the lunar maria.

2. A linear diffusion model for small crater equilibrium

In this section we develop a diffusion-based model for small crater
equilibrium. In this model, we track the SFD of the observable crater
population as the craters are accumulated and degraded on the surface.
The underlying mathematical concept of our model is very similar to
that of Soderblom (1970), Marcus (1970), and Hirabayashi et al.
(2017). In this type of model, the 2-D spatial distribution of craters on
the landscape is assumed to be well-represented by a 1-D size-frequency
distribution (SFD). This 1-D SFD evolves in time due to the production
of new craters and the degradation and removal of old craters. While
the degradation of old craters is driven by changes in the 3-D topo-
graphy, in a 1-D model it is assumed that the observability of a crater
can be represented by a parameter that captures the average effect that
degradation has on the visibility of craters in the population.

As we discussed in Section 1.3, the degradation of the small lunar
maria craters in equilibrium can be modeled linear diffusive degrada-
tion. The basic principle of this idea is illustrated Fig. 3. Therefore the
basic component of our model is the linear diffusion equation given by
Eq. (6), which relates topographic evolution to a parameter called the
degradation state, K, which has units of m2. The key difference between
our analytical model and previous models, such as those by Soderblom
(1970), Marcus (197), and Hirabayashi et al. (2017) is that we will
model the degradation of craters and their ability to be recognized by a
human crater counter in terms of a spatial average of their diffusive
degradation state, K.

It is important to note that the actual morphological evolution of the
landscape is not as simple. From Eq. (6), the change in the actual
morphology of each crater, given by h(x,y), as it is degraded diffusively
depends on the topographic curvature, ∇2h. This means that the sharp
rims of craters degrade faster than the flat inner bowls, and that small
craters degrade faster than large craters. However, because we are
modeling linear diffusion, we can model degradation from multiple
different craters and multiple processes within individual craters as a
linear accumulation of K. By casting our model in terms of degradation
state, we can eliminate much of the complexity involved in modeling
the actual morphology of the surface.

We begin our development by defining two input functions, each of
which is defined in terms of the degradation state K. We call these the
visibility function and the degradation function. The visibility function,
given by Kv(r), quantifies the amount of accumulated diffusive de-
gradation required to fully degrade a crater (i.e. degrade to the point
that the crater is no longer recognizable) of radius, r. We demonstrate
this concept in Fig. 3, in which we have represented the range of de-
gradation states of each crater at each time as a value between
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0 < K < Kv. In contrast, the degradation function, given by
K r r( | / , )c quantifies the how much diffusive degradation a crater of
a given size adds to the pre-existing landscape over some finite region
of the surface. Here, r is the radius of the crater that adds to the de-
gradation state of the surface, and (ρ,ϕ) are polar coordinates with their
origin at the crater center. The degradation function is an arbitrary
scalar field function that could, in principle, capture the full range of
spatial complexity shown in Fig. 4A. Later, we will use a much simpler
model in which the degradation region has a uniform value of K r( )d
over a region of radius f re , as shown in shown in Fig. 4B.

In Section 2.1 we develop constraints on the visibility function and
capture some of the human factors of crater counting with a human
crater counter calibration study. We next develop degradation functions
that capture the processes involved in cratering in terms of the change
over time of the diffusive degradation state (the degradation rate) of the
surface as a function of cratering rate. In Section 2.2 we consider a
model in which the degradation rate is constant. A constant diffusive
degradation rate, K′, or equivalently a constant diffusivity, κ, which
does not depend on the size scale of surface features is the underlying
assumption of observational studies of the topographic evolution of
lunar landscape, such as Craddock and Howard (2000) and Fassett and
Thomson (2014). It is important to note that even if the degradation
rate does not depend on scale, the evolution of landscape features does.
The same value of the degradation state, K, will cause more morpho-
logical changes to small craters than large ones. We will show that a
constant degradation rate model approximates the evolution of a sur-
face in which the flux of primary micrometeoroids dominates diffusive
degradation.

In Section 2.3 we show that the slope of the observed equilibrium
SFD of β∼ 2 requires a scale-dependence in the degradation rate. We
show that a model in which each crater contributes to the degradation
state in an amount proportional to its size naturally leads to the ob-
served equilibrium slope for small simple lunar craters. Finally, in
Section 3 we test our analytical models using the CTEM numerical code.
Because equilibrium crater counts are most clearly seen on maria ter-
rains for r < 50 m craters, we use the crater counts of the Apollo 15
landing site shown in Fig. 2 as our primary constraint.

2.1. Defining and modeling the visibility function

Consider a crater of radius r that degrades diffusively according to
Eq. (3). We will make the assumption that the spatial variability in the
topographic diffusivity κ across crater is relatively small, such that we
can model the average diffusive degradation state of the crater in terms
of a single value of K, using Eq. (6). This assumption was also made in
Craddock and Howard (2000) as well as Fassett and Thomson (2014).
We will later show numerically that this is a valid assumption for lunar
mare craters. At some point K can reach a value at which the crater is no
longer recognizable by a human as a countable crater (see Fig. 3). We
can define a function Kv(r), which describes the maximum degradation
state that a crater can undergo before it becomes uncountable. We call
this the visibility function.

In general, the amount of diffusive degradation a crater can accu-
mulate before becoming uncountable will depend on size; the complete
obliteration of a larger crater requires larger amounts of accumulated
degradation than does a smaller one. To account for this scale depen-
dence, we define the visibility function in terms of the degradation state
at which the crater is no longer recognizable in the form of a power law
function of crater radius as:

=K r K r( ) .v v,1 (7)

The visibility function given by (7) is defined in terms of the dif-
fusive degradation state, and so has the units of length squared. This
means that exponent γ= 2 is a special case in which the coefficient Kv, 1

is dimensionless, and so represents the condition of geometric simi-
larity. It arises when craters of different sizes have the same

morphology, and so an image of a crater provides no information about
its absolute scale. As an example, the complete erasure of a 100 m
crater will require 100× as much accumulated degradation, K, as a 10
m crater, as long as the initial shape of 10 m craters is the same as that
of 100 m craters.

Through experimentation we find that the visibility function for
simple craters is constrained by two parameters: the initial depth-to-
diameter ratio of the crater (d/D)initial, and the minimum depth-to-dia-
meter ratio of the craters that can be counted by a human, which we
call (d/D)cutoff. Simple craters on the lunar maria with r> 200 m typi-
cally begin with (d/D)initial ≃ 0.20 − 0.24 (Fassett and Thomson, 2014;
Pike, 1977; Stopar et al., 2017). This corresponds to an initial condition
for the degradation state of the crater of K= 0.

To determine (d/D)cutoff, and thus the degradation state where
K= Kv for a given crater of radius r, we performed a crater count ca-
libration test using a human to count craters generated by CTEM. We
used CTEM to generate a fictitious heavily-cratered terrain composed of
simple craters. An image of the terrain was generated assuming a 45°
solar incidence. Co-author Bryan Howl was first trained to count craters
using the terrains counted in the study of Robbins et al. (2014). After
training, Howl's crater count SFDs were close to the ensemble median of
the Robbins et al. study, and hence, close to Fassett's counts. Howl was
next tasked with counting craters on the CTEM-simulated surface. We
then correlated the set of craters he identified, as well as the set that
were produced in the simulation but not identified, with their depth-to-
diameter. We found that the best fit value for (d/D)cutoff = 0.050.

The visibility function is defined as the degradation state at the time
that the craterform erodes such that its measured depth-to-diameter is
(d/D)cutoff. We next performed a simulation of the evolution of a simple
crater subjected to diffusive degradation, given by Eq. (6). In this si-
mulation, we generated a single crater in CTEM and degraded it with a
simple constant linear diffusion model. We plot the resulting depth-to-
diameter (d/D) as a function of scale-normalized degradation state (K/
r2) in Fig. 5.

We used least squares fitting to fit the results shown in Fig. 5 with an
analytical function. We found that the value of d/D as a function K
could be approximated by:
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Fig. 5. We show the results of a CTEM simulation of the depth-to-diameter (d/
D) evolution of a simple crater undergoing linear diffusive degradation, given
by Eq. (6). The accumulated degradation state, K, has been normalized by the
r2. The solid black line shows numerical results, while the long-dash line shows
the fitted function given Eq. (8). The horizontal dash line shows the value of (d/
D)cutoff = 0.050 obtained from crater count calibration done by co-author Howl,
and the vertical dash line shoes the corresponding value for the visibility
function coefficient of Kv, 1 = 0.17.
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where a= 0.07 and b= 0.15. The simulated d/D as a function of K/r2

as well as Eq. (8) are shown in Fig. 5. This function is somewhat ar-
bitrary, but it has the advantage of being easily inverted to obtain a
simple expression for K as a function of d/D, which we will next use to
generate a visibility function from the results of our crater count cali-
bration study. We invert Eq. (8) and write the degradation state asso-
ciated with a particular depth-to-diameter ratio:

=K a d D b r[ ( / ) ]1/2 2 (9)

The coefficient b in this fit is equivalent to a d D( / )initial
1/2, and

therefore we can use Eq. (9) to write our visibility function Kv(r).

=K r d D d D r( ) 0.07[( / ) ( / ) ] .v cut ff initialo
1/2 1/2 2 (10)

In CTEM, based on the way the code measures it, (d/D)initial = 0.218
for simple craters. From our crater count calibration study (d/
D)cutoff = 0.050, and therefore from Eq. (10) then Kv, 1 = 0.17 and
γ= 2. The strictest interpretation of this visibility function is that it
quantifies the value of the degradation state of the most degraded, but
still countable, simple craters on a well-resolved image of a lunar mare-
like terrain that is illuminated at 45° solar incidence angle and is
counted by co-author Bryan Howl.

There are a number of factors that can influence the visibility
function for a given crater, including both morphological properties of
the crater itself as well as the factors that contribute to crater re-
cognition, such as the method used to identify the crater, the quality of
the imagery, lighting conditions, and subjective human judgement. We
will next examine the visibility function definition for insight into how
these processes influence it.

If the visibility of a crater depends on its depth-to-diameter ratio, as
in Eq. (10), then we should expect that γ≠ 2 if the initial depth-to-
diameter ratio depends on crater radius, as is the case for complex
craters (Kalynn et al., 2013; Pike, 1977) and possibly also on small
simple craters (Daubar et al., 2014; Stopar et al., 2017). Many factors
can influence the initial morphology of craters, and hence the visibility
function. Craters that form on steeper pre-existing slopes should require
less degradation to become uncountable than those formed on flat
ground. Shallower crater should also degrade more readily than deeper
craters. Evidence suggest that the depth-to-diameter may decreases to
~0.11–0.17 for simple craters with r < 200 m (Stopar et al., 2017). We
can create a form of the visibility function to account for this effect. If
we take (d/D)initial = 0.11 for r= 5 m and (d/D)initial = 0.218 for r= 50
m, then, applying Eq. (10) results in a visibility function with para-
meters Kv, 1 = 0.073 and γ= 2.2. Because Eq. (10) was derived from a
study of simple crater counting, it likely does not apply to complex
craters. As our study is focused on simple lunar mare craters, an in-
vestigation of the visibility function of complex craters is beyond the
scope of this work.

The illumination of the image should also influence the visibility
function. Heavily degraded craters are more easily seen at higher solar
incidence angles where shadowing is more pronounced (Wilcox et al.,
2005). For geometrically similar craters (γ= 2) the effect of this will be
to change the coefficient Kv, 1, where higher incidence angle (sun closer
to the horizon) will result in a large value of Kv, 1. The resolution of the
image used to count craters should also influence the visibility function.
In particular, it should add scale dependence such that the value of Kv
should drop as crater sizes approach the pixel scale of the image.

2.2. Crater equilibrium for the case of constant degradation rate

In this section we will derive an analytical model for the cumulative
size-frequency distribution (SFD) of countable craters in equilibrium for
the case where the rate of change of the degradation state of the surface
is constant with respect to crater size and is proportional to the rate of
crater production.

By the definition of our dimensionless time unit, the rate of crater

production is constant with respect to X. Therefore, we express the
degradation rate for this model as K′ = dK/dX, where K′ is constant for
all crater radii r and has units of m2. Again, we make the assumption
that any spatial variability in degradation state across the surface of
interest is small, and therefore K′ does not depend on the position on the
surface. We note that for the special case where the cratering rate is
constant with time, such as lunar terrains less than ∼3 Gy old, then dX/
dt is a constant and the degradation rate is proportional to the diffu-
sivity as =K dX dt/ .

Consider a surface that is populated at some rate with craters of
radius r over some differential range dr. As each new crater is added
sequentially to the surface, all old craters are diffusive degraded at
some degradation rate. As in Hirabayashi et al. (2017), we can define
the accumulation and degradation of countable craters using a first-
order linear differential equation:

=d
dX

dn
dr

d
dX

dn
dr

k dn
dr

,p

(11)

where dn/dr is the differential number of countable craters, dnp/dr is
the differential form of the production function, and k′ is a di-
mensionless degradation rate parameter that is defined as the fractional
change in the differential number of countable craters per dimension-
less time unit X.

At some point, the oldest crater in the sequence will accumulate
enough degradation that it becomes too degraded to recognize and is no
longer counted. Even though this old crater is lost, a new crater is still
added, and the net number of craters remains the same, e.g. =( ) 0d

dX
dn
dr .

We illustrate this concept in Fig. 3. Therefore, the differential form of
the equilibrium size-frequency distribution is given as:

=
dn
dr k

d
dX

dn
dr

1 .eq p

(12)

The right-hand of Eq. (12) contains the differential form of the
production size-frequency distribution. Cumulative size-frequency dis-
tributions are defined such that = >dn

dr
dn

dr
r , such that =>n drr

r dn
dr

(see Crater Analysis Techniques Working Group et al., 1979;
Hirabayashi et al., 2017), and therefore using our definition of the
production function from Eq. (1), we can write as:

=d
dX

dn
dr

n r .p
p,1

1

(13)

Substituting (13) into (12) gives us:

=
dn
dr

n
k

r .eq p,1 1
(14)

Next, we require an expression for the dimensionless degradation
rate parameter, k′(r). The visibility function is defined as the maximum
degradation state a countable crater can have, and therefore we can
define our degradation rate parameter k′(r) in terms of the visibility
function Section 2.1 as Kv =Kv, 1rγ. The visibility function depends on
crater radius through the exponent γ∼ 2. In the model we are con-
sidering in this section, the absolute rate of degradation, K′, does not
depend on crater radius. In other words, all craters are diffusively de-
graded at the same rate, but, as expressed by the visibility function,
larger craters take longer to fully degrade than small craters.

We define the dimensionless degradation rate parameter in terms of
diffusive degradation state as:

=k r K
K r

( )
( )

.
v (15)

For the model under consideration here, K′ does not depend on
crater radius, and therefore:

=k r K
K

r( ) .
v,1 (16)
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We now combine Eqs. (14) and (16) to write:

=dn n
K
K

r .eq p
v

,1
,1 ( ) 1

(17)

From our definition of the cumulative SFD, neq, > r = − ∫ dneq, and
therefore

=>n n
K
K

r .eq r p
v

, ,1
,1 ( )

(18)

This model predicts that when the diffusivity does not depend on
crater radius, such that diffusive degradation accumulates at the same
rate as cratering, the exponent of the cumulative equilibrium SFD de-
pends on the slope of the production function and the visibility function
as β= η − γ.

For our Apollo 15 study area shown in Fig. 2, the slope of the
production cumulative SFD is η = 3.2. For geometrically similar simple
craters the slope of the visibility function is γ= 2. Therefore, if crater
degradation was dominated by a process that had a constant diffusivity,
the cumulative equilibrium SFD would β= 1.2, rather than β∼ 2, as is
observed (see Fig. 2).

This suggests that the dominant degradation process that de-
termines simple crater equilibrium cannot be modeled with a constant
degradation rate that does not depend on scale. This means that, for the
small lunar craters in equilibrium, the absolute degradation rate of a
crater must depend on its size.

2.3. Crater equilibrium for the case of crater size-dependent degradation

In Section 2.2 we showed that a constant, crater size-independent
degradation rate, K′, for terrains with steep sloped production popula-
tions results in an equilibrium SFD with a slope β that depends on the
production function slope η, as given by Eq. (18). For the steep-sloped
production function SFD of small lunar craters, a constant degradation
rate should result in an equilibrium SFD slope significantly shallower
than the observed value of β∼ 2. A major problem with the constant
degradation rate K′ is that it introduces dimension into the equilibrium
SFD, but the observed value of β= 2 means that dimension does not
appear in the equilibrium SFD. This lack of dimensionality in the
equilibrium SFD requires a crater degradation mechanism that balances
crater production the same way at all size scales.

We will now consider a different kind of model in which the de-
gradation rate is itself determined by the crater production function.
Here the formation of each crater contributes to the degradation state of
the surface in a size-dependent way, such that small craters contribute
small amounts of degradation over a small area and large craters con-
tribute large amounts of degradation over a larger area. This is in-
herently the same degradation model that was developed by Soderblom
(1970), Marcus (1970), and Hirabayashi et al. (2017), but we now
develop it in terms of the diffusive degradation state, K.

In this model craters are both topographic features that are subject
to degradation as well as the agents of topographic degradation. As we
develop our model it is important to distinguish between the two dis-
tinct roles that craters play (features vs. agents of degradation). To do
this we adopt the notation system used by Hirabayashi et al. (2017) in
which we refer to countable craters that are being subjected to de-
gradation have radius r, while newly formed craters that contribute to
degradation have radius r . Any individual crater only ever takes on the
role of degradation agent (r) once (the moment it forms), and thereafter
it becomes a topographic feature to be degraded (r). Therefore, any
individual crater will play both roles in the evolution of the terrain, and
we will assume that the contribution to degradation by new craters will
depend on their radius r .

Because the impact crater production function for the mare terrains
in this study is well-fit by a power law cumulative SFD, the larger
craters occur with lower probability than smaller ones. Therefore, for a

piece of the surface of a given area, the longer it accumulates craters, on
average the larger will be the size of the largest crater that contributes
to its degradation. Similarly, for a given interval of time (or total crater
accumulation) the larger the area under consideration, on average the
larger will be the size of the largest crater that contributes to the de-
gradation of that area. This time and spatial-scale dependence on the
degradation rate results in anomalous diffusion, rather than classical
diffusion (Li and Mustard, 2000; Vlahos et al., 2008), and is a key
constraint, along with geometric similarity, on the conditions that lead
to the equilibrium SFD slope value of β= 2.

Soderblom (1970) developed a model for topographic diffusivity
that accounted for the size-scale dependence of diffusive degradation.
In Soderblom's model, slope-dependent distribution of the proximal
ejecta blankets of small craters was thought to be the primary de-
gradation mechanism for large craters. That is, when a small crater
forms inside the wall of a large crater, its proximal ejecta blanket will
contain more mass on the downslope side than the upslope side. When
averaged over many impact events, this slope-dependent asymmetry in
the mass distribution of small crater ejecta blankets will naturally result
in topographic diffusion of the larger crater as expressed in Eq. (4).

We may rewrite the diffusivity expression given in Eq. (14) of
Soderblom (1970) using our notation system as:

= >C
n r

4
,p r max

1
,1

4

(19)

where C1
1
2 is a constant and np, 1 > r is the cumulative number of

produced craters > 1 m in radius. The term rmax accounts for the size-
scale dependence of the diffusive degradation process resulting from
cratering. In his model, rmax is the radius of the largest new crater whose
effects can be averaged over the old crater of radius r over its lifetime.
The constant C1is related to the mass distribution in the ejecta thick-
ness, with C1

1
2 for ejecta thickness profiles roughly similar to what is

observed on the lunar surface (McGetchin et al., 1973). A challenge
faced by Soderblom (1970) was to determine the appropriate value of
rmax for the problem of equilibrium of small maria craters. He was able
to fit their modeled equilibrium SFD to the observed empirical equili-
brium SFD for r < 50 m lunar maria craters, but his results were very
sensitive to a number of assumptions that were difficult to constrain
from observations.

Here we will develop a model similar for diffusive degradation of
larger craters from the formation of smaller craters similar to that of
Soderblom (1970), as well as that of Ross (1968). We consider a generic
model in which each new crater of size r causes some amount of dif-
fusive degradation to the pre-existing landscape over some finite region
scaled by the crater size. We will model this per-crater contribution to
the degradation state of the surface using a degradation function.

An impact is a complicated event involving, among other things, the
creation of a bowl-shaped depression and raised rim, transport of
ejecta, and the generation of seismic waves (see Fig. 4A). The de-
gradation function quantifies how all the processes involve in cratering
contribute to the diffusive degradation state of the surface over an ex-
tended area. Because the degradation state is defined in terms of to-
pographic diffusion, the changes to the topography depend on the local
slope via Eq. (6).

Each new crater of radius r contributes a finite amount to the de-
gradation state of the surface, K. This contribution is not spatially
uniform across the surface but occurs over some region Rd with surface
area Ad. Consider a degradation function in the form of a scalar field
function K r r( | / , )c , where r is the radius of the new crater that is
contributing to degradation, and (ρ,ϕ) are the polar coordinates of a
point on the surface with respect to the center of the new crater.

We can define a function Kd that only depends on crater radius r and
a non-dimensional scale factor f r( / , ) such that:

=K r r K r f r( | / , ) ( ) ( / , ).c d (20)
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The contribution to the degradation state of the surface by each new
crater of radius r is:

=( )K r R K r

A r
f r d d| ( )

/
( / , ) .d

d

d
R2 d (21)

The field function f r( / , ) is known as an intensity function, and it
can be arbitrarily complex, as it can represent any process involved in
the formation of the new crater that gives rise to, or can be approxi-
mated by, linear topographic diffusion in the form of Eq. (6). For in-
stance, it can represent the slope-dependent proximal ejecta mass
asymmetry of both the primary crater, as in Soderblom (1970), as well
as that due to secondary craters. It can also represent seismic shaking,
which was modeled as a topographic diffusion process in Richardson
(2009). The diffusive intensity function can also potentially have
complex spatial heterogeneity if the high energy deposition of distal
ejecta, such as secondary craters or ballistic sedimentation, are orga-
nized into ray-like features (Elliott et al., 2018; Huang et al., 2017;
Oberbeck, 1975).

In this section we are developing an analytical model that is merely
a representation of the visible crater SFD, and which contains no spatial
information. For the purposes of our analytical model, we can average
out all of the spatial complexities of the degradation function by con-
sidering an equivalent problem in which the diffusive degradation due
to each crater is uniform over a circle of radius f re . The scale factor fe is
found using a surface integral of the non-dimensional scalar field
function f over all possible spatial points:

=f f d d( , ) .e 0

2

0 (22)

This defines a circle of radius f re for which the degradation con-
tribution is uniform and has the same spatially averaged degradation
contribution K as the original, more complex field function did (see
Fig. 4B). This approach averages out all of spatially-dependent com-
plexities in the ways in which the impact process degrades the land-
scape, and so while it simplifies the math considerably, it may miss
some process that are important in the development of the surface. We
will explore the importance of capturing this spatial heterogeneity in
Section 3 when we model the equilibrium process numerically with the
CTEM Monte Carlo code.

Due to the stochastic nature of cratering, there is a finite probability
that each old countable crater of radius r will experience a single de-
gradation event with δK > Kv(r). Cookie-cutting is an example of such
an event. The fact that the empirical crater equilibrium cumulative SFD
is relatively similar across multiple locations on the lunar surface (e.g.
Xiao and Werner, 2015) implies that the degradation of any particular
crater is unlikely to be large relative to its visibility function, and that
the degradation state K at any point on the surface is approximately
equal to the ensemble-mean K and spatially-average K, and that these
are equal.

Recall that we have previously defined the production and equili-
brium crater cumulative SFDs in Eqs. (1) and (2) as power laws with
slopes for the equilibrium and production functions of β and η, re-
spectively. We also defined the visibility function in Section 2.1, Eq. (7),
which we model as a power law with slope γ∼ 2. Because our con-
straint (the empirical equilibrium SFD) is well characterized by a power
law, and all other inputs are also power laws, it is reasonable to assume
that our per-crater degradation function should also be a power law. We
define our per-crater degradation function as:

=K r K r( ) .d d,1 (23)

Just as we discussed in Section 2.1 in developing the visibility
function, the degradation function is defined in terms of the degrada-
tion state, K, which has units of m2, and therefore ψ = 2 represents a
special case in which Kd, 1 contains no information about absolute scale.
As long as fe also does not depend on r , then a degradation function

slope of ψ = 2 is a one that exhibits geometric similarity.
The amount of degradation contributed by each new crater is given

by the degradation function K r r( | / , )c applied over some region
surrounding the newly-formed crater. We can use the equivalent uni-
form circular degradation region concept shown in Fig. 4B, and take the
degradation function as uniform K r( )d over a circular region with area

=A f rd e
2 2.

As in Section 2.2, we begin with our equation for equilibrium given
by Eq. (14) as = ( )rdn

dr
n

k
1eq p,1 , where k′ is again the dimensionless

degradation rate parameter. Unlike in the case we investigated in
Section 2.2 where the degradation rate parameter k′ was a function of
the constant diffusivity and the visibility function, here the degradation
rate parameter arises from the collective accumulation of degradation
from all new craters of size r over time. We can therefore define the
dimensionless degradation rate parameter as k′ = ∫ dk′, where dk′ is the
differential contribution to the complete degradation of old crater r by
new crater r per unit time.

When the degradation from a new crater is small relative to the
visibility function of the old crater, the new crater contributes partial
degradation to the old craters. Because we are averaging over all craters
on the surface, these partial degradations are treated as a fractional loss
of total countable crater number. However, because a crater can only
ever be lost once, we must take care not to over-count the loss of craters
in this averaging. This transition occurs when the degradation function
of the new crater is equal to the visibility function of the old crater, or

=K r K r( ) ( )d v . Therefore, we identify two regimes of degradation that
depend on the relative magnitude of the per-crater degradation func-
tion and the visibility function of the crater being degraded. The
boundary between these two regimes occurs at radius rcrit given as:

=r
K
K

r .crit
v

d

,1

,1

1/
/

(24)

While many of our underlying assumptions are different, our two
regimes are mathematically analogous to the two regimes identified by
Hirabayashi et al. (2017). In our model, <r rcrit is equivalent to what
Hirabayashi et al. called the “sandblasting” regime, and >r rcrit is
equivalent to what they called the “cookie-cutting” regime (see their
Fig. 5). However, our >r rcrit regime is not the same as true cookie-
cutting, as it does not require a crater is lost by direct overlap. For
instance, a small crater completely buried in proximal ejecta would fall
in this regime. We therefore call these two regimes “partial degrada-
tion” ( <r rcrit) and “total obliteration” ( >r rcrit).

Consider an old crater of radius r that is within the degradation
region of a new crater of radius r . If this pair of craters is in the partial
degradation regime, <r rcrit, the old crater is partially degraded by the
new crater. The amount of partial degradation is the ratio of the spa-
tially averaged degradation contribution of the new crater to the visi-
bility function of the old crater, which is expressed as:

= =
<

+
dk K r

K r
A dn r

K
K r

f n r dr( )
( )

( ) ,
r r

d

v
d p

d

v
e p

,1

,1

2
,1

1

crit (25)

If instead this pair of craters is in the total obliteration regime,
>r rcrit, the old crater is completely obliterated, which is expressed in

terms of the spatially averaged degradation contribution as:

=
>

+
dk f n r dr .

r r e p
2

,1
1

crit (26)

There is likely to be a smooth transition between the two regimes
near rcrit, but for simplicity we will assume the width of this transition
region is negligible.

Using our regime definitions, we write our complete dimensionless
degradation parameter as:

= ++ +k
K r

K f n r dr f n r dr1 .
v

r
d e p r e p

,1 0 ,1
2

,1
1 2

,1
1crit

crit (27)
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The lower integral defines the regime of partial degradation, and the
upper integral defines the regime of total degradation. The solution to
this is

=
+

k n f
K
K

r
( 2)( 2)

,p e
v

d
,1

2 ,1

,1

( 2)/
( 2)

(28)

as long as 2 < η < ψ + 2, or otherwise one of the two limits would
yield an infinite result. For shallow production SFDs (i.e. η < 2), this is
the “cookie-cutting dominated” regime. Hirabayashi et al. (2017)
showed that the equilibrium SFD in this regime has the slope β= η. For
very steep production SFDs (i.e. η > ψ + 2), the smallest craters
dominate the degradation, and such steep SFDs must “roll over” to a
shallower slope at some small size, otherwise craters of any size would
degrade at a faster rate than their production rate. This result was also
found by Soderblom (1970) when η > 4, with a model for which an
implied per-crater degradation function was geometrically similar
(ψ=2).

Substituting (28) into (14) we have:

= + +dn
dr f

K
K

r1 ( 2)( 2)eq

e

v

d
2

,1

,1

( 2) 1
( 2)

(29)

After some simplification and integration, this yields a solution for
the cumulative equilibrium SFD of:

=>n
f

K
K

r1 1 ( 2)/
/( 2) /

,eq r
e d

, 2
v,1

,1

2 1
( 2)

(30)

which has the form neq, > r = neq, 1r−β with a slope given as:

= 2 1 .
(31)

The parameters that set the equilibrium slope are the slope of the
visibility function (γ), the slope of the per-crater degradation function
(ψ), and the slope of the production function (η). For geometrically si-
milar craters with geometrically similar degradation contribution we
have ψ = 2 and γ= 2. Therefore, in geometrically similar case, the
dependence on the production function slope η vanishes and β= 2. This
occurs as a consequence of the fact that the production function appears
in both the accumulation and degradation terms of Eq. (11). In other
words, for surface with an equilibrium SFD slope β= 2, the production
and destruction of craters must be intrinsically linked. The population
of counted craters must originate in a production function with the
same slope and cratering rate as that of the craters controlling their
degradation. This also implies that if degradation were dominated by a
process that is independent of the crater production then β= 2 would
be unlikely.

This in contrast with the predictions for equilibrium using a con-
stant degradation rate model derived in Section 2.2 where β= η − γ. In
that case, for η = 3.2, β= 1.2 for geometrically similar craters. For the
crater size-dependent degradation model, when the visibility and per-
crater degradation function are not strictly geometrically similar but
are still close (γ≈ ψ), then the equilibrium slope β only weakly depends
on the production function slope, η, rather than being linearly depen-
dent as in the constant degradation rate model. The crater size-depen-
dent degradation rate model is therefore more consistent with ob-
servations of small simple crater equilibrium of the lunar maria than the
constant degradation rate model.

Finally, we can write Eq. (30) in terms of the uniform circular de-
gradation function parameters:

=
+

K r K f n r
( 2)( )d v e eq,1 ,1

2
,1

( ) ( 2)
( )

(32)

We will use Eq. (32) to constrain the degradation function required
to match the observed equilibrium SFD in Sections 3.3 and 3.4.

3. Testing the analytical models for crater equilibrium with CTEM

In Section 2 we developed 1-D diffusion-based analytical models for
crater equilibrium. The functions that define the inputs and constraints
used in our models, along with their units, are shown Table 1. Here we
will test the analytical models using the Cratered Terrain Evolution
Model (CTEM) and use constraints from both observations and nu-
merical experiments to constrain the parameters that determine the
equilibrium SFD. CTEM is a 3-D Monte Carlo landscape evolution code
that models the topographic evolution of a surface that is subjected to
impact cratering. It has previously been used to study the lunar high-
lands cratering record (Minton et al., 2015; Richardson, 2009) and
impact transport of compositionally distinct surface materials (Huang
et al., 2017). Because it is a three-dimensional code, it can readily
model topographic diffusion. The simulations we perform with CTEM
contain many of the complexities of the landscape that were assumed to
average out in the 1-D analytical models developed in Section 2.
Therefore, the CTEM simulations can be used to test how robust were
the assumptions that went into the development of the analytical
models.

An important part of capturing the way that small craters degrade
larger craters is to ensure that the ejecta generated by each crater has
the correct slope-dependent mass distribution, as discussed by Ross
(1968) and Soderblom (1970). In principle, this is relatively straight-
forward, as CTEM models the distribution of ejecta deposits from each
crater using the ballistic trajectory of parcels of material emerging from
the transient crater region. CTEM calculates the velocity and ejection
angle of each parcel of ejecta and emplaces the ejecta downrange of the
impact site using ballistic range equations assuming a flat plane geo-
metry, as described in Richardson (2009). However, the ejecta thick-
ness model in Richardson (2009) was based on a model for excavation
flow, which scales in a complex way with crater size, and therefore does
not exhibit geometric similarity. To simplify the comparisons between
our numerical results and our analytical model, we needed to better
control the relationship between the ejecta distribution and the size of
the crater. In other words, we needed to ensure that our ejecta model
exhibited geometric similarity.

First, we modified the model for the shape of simple craters from the
original parabolic shape used in Richardson (2009). We now create

Table 1
Definitions of terms used in this text, including the section in the text where the
terms are introduced and defined.

Parameter Name Units Section

r Old crater radius m 1.1
r New crater radius m 2.3
np, > r = np, 1Xr−η Production function #/m2 1.1
np, 1 Production function coefficient mη−2 1.1
η Production function slope – 1.1
X Dimensionless time – 1.1
neq, > r = neq, 1r−β Equilibrium SFD #/m2 1.1
neq, 1 Equilibrium coefficient m2−β 1.1
β Equilibrium slope – 1.1
ngsat, > r = ngsat, 1r−2 Geometric saturation SFD #/m2 1.1
ngsat, 1 = 0.385 Geometric saturation coefficient – 1.1
κ Topographic diffusivity m2/y 1.3
K Topographic degradation state m2 1.3
K′ = dK/dX Degradation rate m2 2.2
k′ Dimensionless degradation rate – 2.2
Kv = Kv, 1rγ Visibility function m2 2.1
Kv, 1 Visibility function coefficient m2−γ 2.1
γ Visibility function slope – 2.1

=K K rd d,1 Per-crater degradation function m2 2.3
Kd, 1 Degradation function coefficient m2−ψ 2.3
ψ Degradation function slope – 2.3

=A f rd e
2 2 Degradation region area m2 2.3

fe Degradation size scale factor – 2.3
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simple craters that conform to the initial shape function given by Eq. (4)
in Fassett and Thomson (2014). Next, we modified the ejecta model in
CTEM so that the ejecta profiles for a crater that forms on a perfectly
flat surface will follow the equation =h h d r( / )rim

3, where the thick-
ness h of the deposit is a function of radial distance d and crater radius r
(McGetchin et al., 1973). In our modified version of CTEM's ejecta
blanket thickness model hrim is determined such that mass is conserved
by the formation of the crater. Because of these modifications, craters
and their ejecta blankets are geometrically similar at all sizes for this
study, with one exception: for craters that form on slopes, we distort the
ejecta distribution to preferentially deposit ejecta mass downslope
using ballistic flight equations. The steeper the initial slope, the more of
the ejecta is deposited on the downslope side, which gives rise to the
diffusive degradation discussed in Soderblom (1970) (see Fig. 6).

Ejecta blankets can contribute to the removal of craters through
direct burial. Ejecta burial is not strictly a diffusive degradation process,
however it has similar properties. The more buried a crater becomes,
the harder it is to observe. As Fassett et al. (2011) showed, an old crater
that is buried in ejecta from a new crater that is as thick as the depth of
the old crater will not be countable. We will therefore approximate the
modification of a crater by burial as a diffusive degradation process that
depends on the local thickness of a new ejecta deposit. We will use the
visibility function derived in Section 2.1 to quantify the amount of
diffusive degradation that will remove craters in the same way as ejecta
burial.

Minton et al. (2015) developed an ejecta blanket degradation model
based on diffusion that erases craters whose depths are equal to the
ejecta blanket thickness. The value of the diffusion parameter in that
model was set through trial and error, but now we can formally define it
using our degradation model. In this model, a crater is erased when the
ejecta thickness is at least the thickness required to degrade a crater. In
other words, hej = 2rdegraded[(d/D)initial − (d/D)cutoff] = 0.34rdegraded,
where rdegraded is the largest crater that is fully buried by an ejecta
blanket with thickness hej. This means that

= =K K
h

r
h1.5 ,d ej v

ej

degraded
ej,

2
2

(33)

Our model for ejecta burial assumes that burial follows the diffusive

degradation relationship of Eq. (6), rather than being linear with burial
depth, which is not strictly correct. However, as we show later, ejecta
burial likely contributes very little to the degradation of small lunar
craters in equilibrium, so the approximations we use do not become
important for our major results.

Due to the finite resolution of CTEM, we must consider the effects of
subpixel cratering. In our analytical models, we assumed that the pro-
duction function SFD was continuous down to infinitesimal sizes.
However, the NPF is only defined for r > 5 m craters. If we truncated
the production function to craters this small, we may introduce non-
physical behavior in the crater SFD from the lack of small impactors.
We make a simple, but reasonable, assumption that the SFD continues
with the same slope into the size range of micrometeoroid impactors.
We extrapolate the SFD of the production function down to craters as
small as ∼6 μm. To handle the population of craters smaller than the
resolution limit of 1 m in our simulation, we periodically apply diffu-
sive degradation to each pixel. This subpixel diffusion is modeled using
the same degradation function we use for the resolved craters, but in-
stead of modeling each crater individually, we use the subpixel portion
of the crater production function scaled to the pixel area. The differ-
ential form of the subpixel crater production function is used as an
input into a Poisson random number generator, and then the resulting
differential number of subpixel craters is multiplied by the degradation
contribution using the degradation function. This is done on each pixel
of the simulation domain.

In Section 3.1 we first perform a series of numerical experiments to
constrain a degradation function using a model in which the dominant
mechanism for diffusive degradation is the preferential downslope de-
position of proximal ejecta by primary impactors. We will show that
this model is inadequate to match the observed equilibrium SFD for
simple lunar craters, and some additional source of diffusive degrada-
tion is required that was not accounted for in that model. In Section 3.2
we develop a production function that contains an enhanced micro-
meteoroid population, which approximates the constant degradation
rate model that was developed in Section 2.2, and show that, as pre-
dicted by the analytical model, this type of model also does not match
the observed equilibrium SFD. Next, we use the observed equilibrium
SFD in order to constrain the properties of the required additional

0o slope

10o slope

20o slope

30o slope

Fig. 6. An illustration of the slope-dependent asymmetry
in the proximal ejecta of small impacts into pre-existing
topography. The large shaded region is a portion of the
profile of a partially degraded large crater. Each inset
shows the CTEM-generated profile of a crater that forms
at the local slope indicated by the arrow. The dark blue
regions in each inset shows the portion of the profile of
each small crater that is the ejecta and raised rim. As the
slope angle of the target surface increases, proportionally
more of the ejecta is deposited downslope. (For inter-
pretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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diffusive degradation for a uniform degradation region model in
Section 3.3. In Section 3.4. we develop a model in which the dominant
source of diffusive degradation occurs in a spatially heterogenous distal
ejecta, which is crater size-dependent.

3.1. CTEM simulation of the constant slope primary production function

We use the capabilities of CTEM to test whether the observed
equilibrium SFD is achieved for a steep-sloped production SFD when
the only source of crater degradation is the primary production popu-
lation, and the primary production population of small craters (mi-
crometeoroids) is a simple power law extrapolation of the production
function of the larger craters. We model the degradation by primary
impactors using a slope-dependent proximal ejecta distribution model
similar to that of Soderblom (1970). We only consider primary im-
pactors and their proximal ejecta blankets. We also used the analytical
model developed in Section 2.3 in order to predict the equilibrium
cumulative SFD for this model. To do this, we first constrained the per-
crater degradation function, K r( )d , for the proximal ejecta redistribu-
tion model. We use a production function with a constant slope of
η = 3.2 for r > 6 μm craters.

We performed a set of simple numerical experiments to determine
the per-crater degradation function K r( )d that results from the slope-
dependent downslope ejecta deposition model we included in CTEM. In
these experiments we eroded a single large “test crater” by a population
of smaller craters of identical size. Examples of the outputs of these
simulations are shown in Fig. 7 for different combinations of pixel re-
solution, test crater size, and total cratering. We computed the average
profile of the large test crater from our DEMs at different points in the
simulation.

These profiles were then fitted to the profile of the same size crater
undergoing classical diffusion by Eq. (6) and solving for the required
degradation state K to match the simulated profiles. The values of Kd, 1

and fe are degenerate when deriving the degradation function in this
way, and so we assume fe = 1. The results and a fit to the per-crater
degradation function are shown in Fig. 8. The results of these experi-
ments also show the validity of the assumption that spatial variability in
the mean degradation parameter is small.

Over the range of craters we considered in these experiments, our
simulation results are well fit to a per-crater degradation function given
by =K r0.27d

2. The coefficient, Kd, 1 = 0.27 tells us how the effec-
tiveness, or power, of the diffusive degradation, and the exponent ψ = 2
is a consequence of the geometric similarity of crater morphology at all
sizes in CTEM. Although we simulated the degradation due to craters
between =r 0.25 5 m, our best fit exponent ψ = 2 indicates that the
CTEM craters are geometrically similar at all scales, and the coefficient
Kd, 1 is unitless. The absolute scale in these simulations is therefore
arbitrary, and our degradation function is applicable to any size crater,
so long as we maintain similar crater geometry for all craters in our
numerical simulations.

Using our degradation function derived from the CTEM numerical
experiments, we can estimate the equilibrium crater SFD that we should
expect using the analytical model developed in Section 2.3. We will
compare our results with that for the Apollo 15 landing site, shown in
Fig. 2. Our production function parameters are np, 1 = 4.3 m1.2 and
η = 3.2. The visibility function parameters derived from our human
crater count experiment are Kv, 1 = 0.17 and γ= 2. From our single-
size crater experiments our degradation model has parameters Kd,

1 = 0.27, ψ = 2, and fe = 1. Using Eq. (30) we estimate that neq,

1 = 0.058 and β= 2.
Considering only the primary production population with a constant

SFD slope results in a value of neq, 1that is nearly an order of magnitude
higher than Fit 1 value of 0.0084 from Fig. 2. This suggest that if pre-
ferential downslope ejecta deposition of primary craters was the
dominant mechanism for diffusive degradation on the lunar surface,
then crater densities would be much higher than what is observed on

terrains such as the Apollo 15 landing site. We tested this prediction
using CTEM to simulate the Apollo 15 landing site using with a re-
solution of 1 m/pixel on a domain 1000×1000 pixels. We bombarded
our simulated surface with a crater production function with np, 1 = 4.3
m1.2 and η = 3.2. The results are shown in Fig. 9.

Fig. 9 shows the shaded DEM and crater counts at the end of our
simulation of the slope-dependent ejecta deposition model. The simu-
lation DEM is qualitatively much rougher in texture than the real Apollo
15 landing site at similar scales shown in Fig. 2. In Fig. 9 we plot both
the crater counts of the real surface from co-author Fassett in Robbins
et al. (2014) and the crater counts of our CTEM simulation. We also plot
both the predicted equilibrium line from Eq. (30) and the geometric
saturation line for reference. As we can see, the crater number density
we predict from our analytical model as well as the crater number
density we reach in the numerical simulation are far higher than is
observed on the lunar surface. Both our analytical and numerical results
suggest that our slope-dependent ejecta deposition model is inadequate
for explaining the observed degree of diffusive degradation on the lunar
surface.

In the next sections we turn the problem around and treat the em-
pirical equilibrium SFD as a constraint and solve for the uniform cir-
cular degradation function parameters Kd, 1 and fe that match that
constraint. Once we determine what parameters best match observa-
tional constraints, we will then discuss the implications of our derived
degradation function on what processes dominate diffusive degradation
of the lunar surface.

3.2. CTEM simulation of a production function with enhanced
micrometeoroids

In Section 3.1 we used a numerical simulation in CTEM to show that
if diffusive degradation is dominated by slope-dependent proximal
ejecta distribution, the resulting equilibrium cumulative SFD was an
order of magnitude higher than is observed. Our numerical results were
consistent with what we predicted using the analytical model devel-
oped in Section 2.3. In order to match the observed equilibrium SFD,
we require some additional source of diffusive degradation.

Craddock and Howard (2000) assumed that the degradation of lunar
craters in the size range of 500 m < r < 1500 m was driven by ∼1
mm micrometeoroids. Therefore, one possibility is that we are not
modeling the micrometeoroid population correctly. Our results from
Section 3.1 suggest that we need a higher amount of diffusive de-
gradation in order to match the observed equilibrium density for small
lunar craters. Therefore, in order for the Craddock and Howard as-
sumption to be correct, in which micrometeoroids dominate the diffu-
sive degradation of lunar landscapes at the scale of our study, the
production SFD must have more micrometeoroids than is predicted by a
simple power law extrapolation of the NPF to small sizes. We therefore
consider the possibility that the production function is “enhanced” with
an additional population of micrometeoroids. We will first constrain
what such a population would look like in order to match the observed
degradation state of the small craters of our comparison data set, and
then we will compare this constraint with observations of what the true
micrometeoroid population looks like.

We can use our analytical models developed in Section 2 to predict
the effect of a large population of unresolved micrometeoroid craters,
which will be smaller than the 1 m resolution limit of our CTEM si-
mulations. We will assume that all craters (including our micro-
meteoroids) follow the uniform circular degradation function we de-
rived from our single crater size degradation experiments in Section
3.1, where Kd, 1 = 0.27 m2, ψ = 2, and fe = 1.

Consider a steep-sloped production SFDs (i.e. η > 2 + ψ). The in-
tegral given by Eq. (27) predicts that k′ → ∞ as r 0. Physically this
means the smallest craters in such a steep-sloped SFD would wipe the
surface clean of all large craters faster than they could accumulate, and
the surface would never be able to retain any countable craters. This is
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obviously not what happens in nature! Now instead consider a pro-
duction function that has η > 2 + ψ, but only for a finite range of
craters sizes, such that > >r r 0min . In such a broken power-law pro-
duction function, degradation could again have a finite value, provided
that the production function slope had a roll-over to η < 2 + ψ below
rmin.

We now construct an “enhanced micrometeoroid” production
function for our CTEM simulations. We do this by creating a broken
power-law production function that has three branches. The first
branch is our “resolvable” crater branch, which is simply the same
production SFD that we have used previously, but only for craters larger
than the resolution limit of our CTEM simulations, which we set as rb.
The second branch is our “micrometeoroid” branch, which has a much
steeper slope than our resolvable branch and connects with our re-
solvable branch. Because our micrometeoroids are constrained to pro-
duce a finite amount of diffusive degradation, we must roll over the
micrometeoroid branch to a “craterless” branch at some size ra < rb.
With this production function the resolved craters will degrade the
surface just as in Section 3.1, but now we add a new source of diffusion
arising from the unresolved micrometeoroids, which will have a steeper
slope than the resolved craters. Because the micrometeoroids are un-
resolved, they will create the equivalent of a constant diffusivity on the

resolved craters.
For the micrometeoroid branch where ra < r < rb. ηmm ≫ η we

make use of the accumulation rate of the degradation state, K′, rather
than the non-dimensional crater degradation parameter k′. As long as
the cratering rate is constant in time then K′ = κ, which is the more
commonly-used diffusivity. The unresolved micrometeoroid craters will
be fully in the partial degradation regime, so using Eq. (25) we can
write

= +K K f n r dr.mm r

r
d e p,1

2
,1

1
a

b

(34)

Evaluating the integral given by Eq. (34):

=
+

+ +K K f n r r
2

( ),mm d e mm p
mm

mm
a b,1

2
, ,1

2 2mm mm

(35)

Our CTEM resolution is 1 m/pix, but CTEM can model the ejecta
blankets of craters below the resolution limit. In order to ensure that
our enhanced micrometeoroid population behaves in a way that is
consistent with a constant diffusive degradation rate, we chose a value
of rb = 0.03 m, which is comfortably below the resolution limit. So, to
create our micrometeoroid population, we create a steep branch of our
production function that has ηmm > 2 + ψ for rb < 0.03 m. For

r = 50 m n5.0 m = 0.10 m-2 n5.0 m = 0.51 m-2 n5.0 m = 1.02 m-2

r  = 25 m n
2.5 m

 = 0.56 m-2 n
2.5 m

 = 2.82 m-2 n
2.5 m

 = 5.64 m-2

r = 25 m n
1.0 m

 = 9.11 m-2 n
1.0 m

 = 91.12 m-2 n
1.0 m

 = 182.25 m-2

r = 5 m n
0.5 m

 = 3.32 m-2 n
0.5 m

 = 41.49 m-2 n
0.5 m

 = 82.98 m-2

Fig. 7. Shaded DEM maps from single crater population bombardment experiments that were used to determine the degradation function for the slope-dependent
proximal ejecta mass distribution of primary impactors. All simulations have a resolution of 0.25 m/px. The large crater's ejecta blanket was truncated at 2.3r (the
edge of the continuous ejecta blanket) in order to prevent overlapping ejecta due CTEM's repeating boundary condition. The ejecta of small craters was truncated at

r5.0 . No additional diffusive degradation was included in these simulations.
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r > 0.03 m we follow our original extrapolated NPF, with parameters
η = 3.2 and np, 1 = 4.3 m1.2. We also require that the broken power law
is continuous at the break at rb = 0.03 m.

We constrain the ra and ηmm of our micrometeoroid model such that
degradation state generated by our micrometeoroids will be Kmm′ = 650
m2. This value was chosen so to approximately match what is required
for the r∼ 1 − 10 m craters to be in equilibrium. Using the same de-
gradation function that we derived from our single crater size experi-
ments in Section 3.1 (Kd, 1 = 0.27, ψ = 2, and fe = 1), we can use Eq.

(35) to generate a set of enhanced micrometeoroid production function
models that result in the same value of Kmm′. We plot examples of these
production functions compared to our extrapolated NPF in Fig. 10.

The analytical model developed in Section 2.2 predicts that a con-
stant diffusivity model would result in an equilibrium SFD for the re-
solved craters with a slope β= η − γ, given by Eq. (18). For our re-
solved craters, η = 3.2 and γ= 2, and so we would predict an
equilibrium slope of β= 1.2, rather than the observed value of β∼ 2.
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Fig. 8. The degradation function model obtained from our single crater simu-
lations, shown in Fig. 7. The primary degradation process in these simulations is
slope-dependent mass redistribution in the proximal ejecta of the small craters
(see Fig. 6). Ejecta burial is also modeled by applying Eq. (33) to the pre-ex-
isting terrain beneath each small crater's ejecta. Each point represents a fit to
the per-crater contribution to the degradation state from each simulation.
Multiple points for a given crater radius indicate simulations done at different
pixel resolutions. The solid line is the best fit to the data and gives the para-
meters of the degradation function for this model of Kd, 1 = 0.27 and ψ = 2,
assuming fe = 1.
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equilibrium” was using Eq. (30) using visibility function parameters Kv, 1 = 0.17 and γ= 2, and degradation parameters Kd, 1 = 0.27, ψ = 2, and fe = 1. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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production of micrometeoroid craters constrained from the LDEF experiment
and iSALE simulations of Cremonese et al. (2012). The long-dashed lines (dark
orange) show a set of enhanced micrometeoroid production functions. These
each have a steep branch (shown are ηmm = 4.01, 5, and 6) for r < 0.03 m that
produces the equivalent of a constant degradation rate of K′ = 650 m2 in CTEM
simulations with a resolution of 1 m/pix. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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As discussed in Section 2.3, an equilibrium slope of β= 2 implies both
geometric similarity of the visibility and degradation functions and that
the countable craters originate from a population with the same slope
that dominates the degradation. While we have imposed geometric si-
milarity on these CTEM simulations (γ= 2, ψ = 2, and fe = 1), the
diffusive degradation of the surface is dominated by the production of
our enhanced micrometeoroid population, which has a steeper slope
than that of our resolved craters, and this should drive the equilibrium
slope away from 2. This suggests that micrometeoroids are unlikely to
be the extra source of diffusive degradation required to match the ob-
served empirical equilibrium SFD.

To compare with our numerical model, we note that our equilibrium
SFD contains both the effects of micrometeoroids and the resolvable
craters. Therefore, the analytical model for the equilibrium SFD for
constant degradation rate, K′, given by Eq. (18) is only an approxima-
tion. To account for the contribution by both the micrometeoroid
branch of the production function and that from the resolvable branch
of the production function, we must modify our dimensionless de-
gradation parameter such that:

= +k k k ,mm res (36)

where:

= +k
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The resulting equilibrium SFD is determined by substituting the
above expressions for k′ into Eq. (17). This will not result in a power law
equilibrium SFD. However, it should asymptotically approach the SFD
given by Eq. (18) for r < rb, and likewise should asymptotically ap-
proach the SFD given by Eq. (30) when r > rb.

As in the simulation in Section 3.1 we simulated the cratering due to
our enhanced micrometeoroid population in CTEM with a resolution of
1 m/pixel on a domain 1000×1000 pixels. The final result of this

simulation is shown in Fig. 11. As predicted, the small craters of our
simulation of the enhanced micrometeoroid production population do
not produce a power law equilibrium SFD, and instead it approaches
the equilibrium SFD predicted by our constant degradation rate model
given by Eq. (18) with slope of β= 1.2 at small crater sizes, and at large
craters the equilibrium SFD approaches the same equilibrium SFD as we
obtained in the simulation shown in Fig. 9 with a β= 2 but a coefficient
an order of magnitude higher than is observed.

We can also compare the population of enhanced micrometeoroid
craters to constraints on the observed flux of micrometeoroids.
Cremonese et al. (2012) used the iSALE hydrocode to model the mi-
crometeoroid impacts accumulated on Long Duration Experimental
Facility (LDEF). We plot the cumulative production SFD for the LDEF-
derived micrometeoroid craters in Fig. 10. These results show that even
our simple extrapolation of the NPF to small sizes produces orders of
magnitude more micrometeoroid impacts than is observed, and yet still
falls short of producing the diffusive degradation required to match
equilibrium. Both the observational constraints on the flux of micro-
meteoroids and the slope of the observed equilibrium SFD suggest that
the additional diffusive degradation required to produce crater count
equilibrium of simple lunar craters of the maria is not due to micro-
meteoroids.

3.3. Modeling the equilibrium SFD for the spatially uniform crater size-
dependent degradation region model in CTEM

In Sections 3.1 and 3.2 we used numerical simulations in CTEM to
show that neither the slope-dependent proximal ejecta distribution of
primary impactors, nor an enhanced micrometeoroid population can
produce the right kind of diffusive degradation required to match the
observed equilibrium SFD seen in small simple craters of the lunar
mare, as shown in Fig. 2. Under the assumption of geometric similarity
(γ= ψ = 2), the crater size-dependent degradation model predicts the
correct slope of β= 2 for the equilibrium SFD, regardless of the pro-
duction function slope, η, as expressed by Eq. (31). These results suggest
that in order to match the observed equilibrium SFD of small lunar
craters, we require some source of extra diffusion that is crater size-

Production function slope η = 3.2 with enhanced micrometeoroids
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Fig. 11. CTEM simulation for the production function with enhanced micrometeoroid population (see Fig. 10) which produces an equivalent of a constant de-
gradation rate of K′ = 650 m2 for the resolved craters (r > 1 m). The resolvable crater production function has parameters np, 1 = 4.3 m1.2 and η = 3.2, and our
visibility function has parameters Kv, 1 = 0.17 and γ= 2. We show three different solutions to the equilibrium SFD, neq, > r here. The line labeled (K′ = 650 m2) is the
constant degradation rate solution given by Eq. (18). The line labeled (η = 3.2) is the crater size-dependent degradation rate solution given by Eq. (30), using the
resolvable crater production function. The line labeled (Full Prod. Func.) is a numerical solution to the equilibrium SFD using a piecewise degradation rate parameter
given by Eq. (36). The CTEM crater counts match the predicted equilibrium line, but do not resemble the observed equilibrium SFD.
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dependent. We therefore turn the problem around and use the equili-
brium SFD parameters of neq, 1 = 0.0084 ≈ 0.02ngsat, 1 and β= 2 as a
constraint on the parameters of the degradation function, using our
analytical model given in Eq. (30). Our goal is to quantify the required
“extra degradation” that each new crater contributes during its for-
mation. For now, we will also make the same simplifying assumption as
we did in developing our analytical model in Section 2.3 that the de-
gradation region is uniform and circular. We will later relax this as-
sumption when we explore the effect of spatial heterogeneity in the
form of distal rays in Section 3.4.

In the crater size-dependent degradation model, each new crater
contributes to the degradation of the pre-existing landscape in an
amount that is proportional to its size via the degradation function. The
degradation function acts over an extended region (see Fig. 4A). The
source of degradation could come from a number of physical processes,
such as seismic shaking, secondary craters, ballistic sedimentation, etc.

Before we proceed, we briefly mention that we also found via nu-
merical experimentation that there is an upper limit to how high Kd can
be for a given fe. When Kd gets high enough, the extra per crater de-
gradation can become powerful enough to completely wipe clear any
pre-existing topography. Once this happens, additional degradation no
longer contributes to the actual degradation state of the surface. We call
this effect the diffusion limit. This is somewhat similar to the I= 0 case
of Howard (2007), in which no memory of the local pre-existing terrain
remains after each cratering event. However, craters on real planetary
surfaces inherit some memory of the pre-existing state in both the
morphology of the crater interior and proximal ejecta on slopes
(Aschauer and Kenkmann, 2017; Howard, 2007) and the visibility of
pre-existing craters beneath ejecta blankets (Fassett et al., 2011).
Therefore, Kd must be well below the value of the diffusion limit to be
consistent with observations. With some numerical experiments in
CTEM we found that that Kd, 1|limit ≈ 0.76fe1.5 m2. This sets an upper
bound on what our per-crater degradation function coefficient, Kd, 1,
can be in order for the model to reproduce the correct equilibrium SFD
coefficient, neq, 1.

We impose geometric similarity, which constrains our degradation
function slope to ψ = 2 (as well as the visibility function slope of γ= 2).
Under these model assumptions, two parameters remain unconstrained:
the degradation state coefficient Kd, 1, and the degradation size scale
factor, fe. These are anti-correlated, such that in order to achieve a
given value of neq, 1, a larger value of Kd, 1 is needed for a smaller value
of fe, and vice versa. Fig. 12 shows a family of solutions for the com-
bination of Kd and fe required to match the equilibrium SFD coefficient
neq, 1 = 0.0084. For reference we also plot both the diffusive limit re-
gion and our model for the degradation strength of ejecta burial from
Eq. (33).

There are a number of constraints that can determined from Fig. 12.
First, this figure shows that the solution for fe = 1 violates the diffusion
limit constraint. This means that the extra degradation we require in-
volves processes outside the crater rim. Fig. 12 can also be used to show
that ejecta burial is unlikely to be an important process for setting the
equilibrium SFD. In the proximal ejecta region, the effectiveness of
ejecta burial is several orders of magnitude lower than the equilibrium
solution for the equivalent degradation region (fe = 3). The effective-
ness of ejecta burial decays rapidly with distance from the crater rim, so
simple burial by distal ejecta (i.e. low energy deposition) is not likely to
play much of a role in crater degradation, in contradiction to the con-
clusion by Marcus (1970) that burial by distal ejecta was the dominant
degradation mode for small lunar craters.

The comparison between the effectiveness of ejecta burial and so-
lutions to the degradation function shown in Fig. 12 can also be used as
a constraint in a different way. As we discussed when developing our
model for the effectiveness of ejecta burial, Fassett et al. (2011) used
crater counts surrounding Orientale and a simple ejecta burial model to
show that the Orientale ejecta thickness profile was consistent with
estimates of McGetchin et al. (1973). This can only have been done if

simple ejecta burial (i.e. low energy ejecta deposition) is the dominant
mechanism for degrading and removing pre-existing craters in Or-
ientale's ejecta blanket. The implication is that the extra degradation we
require to match the observed value of neq, 1 cannot be stronger than
ejecta burial in the proximal ejecta region, or this observational con-
straint would be violated. This is not a very strong constraint, as it could
be that the ejecta of large basins such as Orientale are less effective at
degradation, relative to their size, than small simple craters. Never-
theless, it serves as a useful limit to compare the relative strength of our
“extra” degradation in the proximal ejecta region.

Using the effectiveness of ejecta burial in the proximal ejecta region
as an upper limit of the extra degradation required for setting the small
crater equilibrium SFD, Fig. 12 shows that the only solutions that work
are those with fe ≳ 50. This upper limit suggests that the required extra
degradation takes the form of energetic distal ejecta deposition, which
includes secondary cratering and ballistic sedimentation (see Section
1.4.4). To determine what kind of degradation function best matches
observations, we conducted a series of numerical experiments in CTEM
in which we add extra diffusive degradation to each crater over a circle
of radius f re for fe ≥ 3. We assume a geometrically similar form for the
degradation function (ψ = 2 and constant fe) and calculate the value of
Kd, 1 required to match our Fit 1 equilibrium cumulative SFD for a given
value of fe. Our input production SFD is a simple power law function
with a slope η = 3.2, and we include the diffusive effects of subpixel
craters down to ∼6 μm.

In previous CTEM simulations, the repeating boundary condition
was adequate for modeling local scale effects of craters on our domain.
However, once we consider that the distal effects of craters, we need to
consider the effects of large craters that may form beyond our simulated
local domain. We implemented a superdomain in CTEM that is large
enough to accommodate the largest craters that could affect our local
domain for a given value of fe. Just as in our local domain, superdomain
craters are randomly drawn from our production function. If a super-
domain crater is found to be large enough to affect the local domain,
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Fig. 12. This plot shows the contribution to the diffusive degradation state, Kd,
by the formation of each new crater of radius r as a function of radial distance
from the crater center, ρ. All values have been normalized by the crater radius
under the assumption of geometric similarity (γ= ψ = 2). Each solid black line
shows a solution for the equilibrium SFD (neq, 1 = 0.0084 and β= 2) for the
crater size-dependent degradation model, given by Eq. (32) assuming a uniform
circular degradation region with radius rfe. The shaded region (orange) shows
where values of K r/d

2 that are not attainable for a given value of fe (the dif-
fusion limit), which rules out the fe = 1 solution. The dashed line (blue) shows
the effectiveness of ejecta burial, given by Eq. (33) for an ejecta blanket profile

=h r r/ 0.04( / )ej
3 (McGetchin et al., 1973). Only the solution for fe = 50 sa-

tisfies the constraint that the extra degradation is less effective than ejecta
burial in the proximal ejecta blanket region. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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then distal diffusive degradation is applied to the local simulated do-
main.

Fig. 13 shows the cumulative number of craters with r > 5.5 m vs.
simulated time for four of our CTEM simulations. We also show the
predicted cumulative number of craters in equilibrium from Eq. (30).
These simulation results show that for large values of fe we start to see
large variations in crater density. They are caused by large distant
craters from the superdomain that occasionally obliterate craters on the
local simulation domain. This type of behavior is typical of anomalous
diffusion, rather than classical diffusion, and we call them “anomalous
jumps.”

It would appear from Fig. 13 that our fe = 3 case would provide the
closest match to the observed lunar surface, as no large anomalous
jumps occur within the simulation time. However, even though the
crater counts are well-matched in the fe = 3 case, the surface mor-
phology tells a different story.

Fig. 14A shows a shaded DEM of the surface. Each crater in this
simulation produces a smooth halo of obliterated craters, which is not
observed in real craters. This is because the per-crater degradation
function for this case is very close to diffusive saturation, as seen in
Fig. 12.

Increasing fe to 10 reduces the effect of diffusive saturation (Fig. 15)
but begins to introduce anomalous jumps that periodically obliterate
the craters in the simulated surface. As fe increases to 50, these
anomalous jumps become more frequent, which likely violates ob-
servational constraints. That is, if these anomalous jumps occurred as
often as these high fe value simulations would suggest, a significant
fraction of the maria would smooth and nearly crater free at the scales
comparable to our simulation domain.

3.4. Modeling the equilibrium SFD for the spatially heterogeneous distal
degradation model in CTEM

In Section 3.3 we defined a model in which each new crater of size r
contributes to the diffusive degradation of the pre-existing surface over
a uniform circular region of size f re . We showed that the value of the
degradation region scaling factor fe was constrained to be quite large
(fe ≳ 50) in order to not violate observations of proximal ejecta burial.
However, we showed that uniform circular degradation functions with

large values of fe produce too-frequent anomalous jumps, which also
violate observational constraints from the lunar surface. On the face of
it, these results suggest that there are no solutions to the problem of
matching empirical equilibrium. In order to solve this problem, we need
to understand the physical meaning of large values of fe.

When fe ≳ 2.3, then we are assuming that each new crater is pro-
ducing diffusive degradation of terrains in the region of its distal ejecta.
Thus far when we have modeled this additional distal degradation in
CTEM we have made the simplifying assumption that the per-crater
degradation Kd was constant over a circular region of radius f re .
However, we know from observations that the ejecta blanket of craters
becomes highly spatially heterogeneous beyond r~2.3 , and the distal
ejecta is distinguished by thin patchy streamers known as rays (Melosh,
1989).

It is reasonable to assume that the spatial distribution of diffusive
degradation from a crater would correlate with its rays, rather than
occurring over a uniform circular region. If so, then the contribution
from distant large superdomain craters that causes the frequent
anomalous jumps would be reduced, as the probability of a ray from a
superdomain crater intersecting the domain would be lower than in the
uniform circular degradation model of the same size degradation re-
gion.

To model the effect of crater rays, we apply our extra diffusive
degradation in a ray pattern. We use ray geometry model modified from
that described in Huang et al. (2017). That work reported a polar
function that defined the ray boundaries. Here we use a similar formula
that defines a spatial field function that is compatible with our for-
mulation of the degradation function in Section 2.3. Our ray function is
not a well-constrained depiction of the spatial variability of rays, as
defining such a function would be beyond the scope of this work. In-
stead, we develop a function that captures some of the qualitative
properties of crater rays (see Elliott et al., 2018) in order to explore,
qualitatively, the effect of ray geometry on our CTEM simulation re-
sults.

In our model, the number of rays is given as Nrays. The strength of
the degradation function is described using a spatial intensity function f
(ξ,ϕ), where = r/ . We model the intensity of the degradation func-
tion to follow a gaussian function across the rays, each of which is
defined over a sector centered at azimuth angle ϕr, i, where i is the index
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Fig. 13. Cumulative surface density of craters with r > 5.5 m from our CTEM simulations with extra diffusive degradation added in order to match the observed
equilibrium SFD with parameters neq, 1 = 0.0084 and β= 2, given by Eq. (32). The extra diffusive degradation generated by each crater of radius r is modeled using a
uniform circular region with degradation function coefficient Kd, 1 over a region of radius rfe. The dashed line indicates the observed equilibrium crater density
neq, > 5.5 m. In the uniform degradation region model, the number density of the simulated craters fluctuates around the equilibrium value. As the value of fe increases
from 3 to 50, the magnitude of the fluctuations increases.
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of the individual rays. Each ray center is evenly distributed such that ϕr,

i = 2πi/Nrays. The relative length of each individual ray is given as Li.
The sectors are evenly divided up by the number or rays, however we
randomize which sector is assigned which particular ray length. The
intensity function is defined as:

=
<

f K
f L

L
( , )

exp
( )
2[ ( )]

,

0,
,ray

i
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r i

w
i

i

,
2

2
rays

(39)

where Kray is a constant scaling factor that is constrained by comparing
the integrated intensity function to a uniform circular degradation. The
length of each ray is controlled by the length parameter:
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The width of each ray is controlled by the parameter ϕw(ξ) = rw(ξ)/
ξ:

=r
wN

r w
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rays
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cont cont

2

(41)

where rcont = 2.3 is the continuous/distal ejecta boundary, and w is a
width scaling factor that we use to determine the relative width of the
rays in two different models. We will call w= 1 “ray model 1” and
w= 2 ray model 2. Finally, we radial dependence on the strength of the
intensity is determined by:

Crater size-dependent degradation (uniform): η = 3.2; Kd,1 = 0.173;  fe = 3.0;  ψ = 2.0
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Fig. 14. Similar to Fig. 9 but with additional extra diffusion added over a uniform region with radius fer, with fe = 3 and Kd, 1 determined by solving Eq. (32). While
we are able to reproduce the equilibrium SFD correctly, the model results in a surface that does not resemble the lunar surface. Each new crater produces a smooth
crater free “halo” out to the radius of rfe, which is not observed on natural surfaces (see Fig. 2A).

Crater size-dependent degradation (uniform): η = 3.2; Kd,1 = 3.127×10-3;  fe = 10;  ψ = 2.0
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Fig. 15. Similar to Fig. 14 but with fe = 10. A larger value of fe decreases the magnitude of the “halo” effect, but the increases the frequency of anomalous jumps from
distant craters.
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where =r L( 1)p i i,
1
2 . This function causes the degradation function to

have peak intensity at a point half way between the crater rim and the
length of the ray, Li. We generate the function this way so that the
degradation function meets the observational constraint that the extra
diffusion generated by this function cannot exceed that arising from our
ejecta burial degradation model (see Fig. 12), but it could be larger in
narrow regions far from the crater rim.

We show two different ray patterns generated by our intensity
function in Fig. 16, using parameters Nrays = 16, L1 = 3 (the smallest
ray length), and L16 = 16 (the longest ray length). Ray model 1 uses
width parameter w= 1 and ray model 2 uses width parameter w= 2,
which results in narrower rays. For each crater, we apply diffusive
degradation only to regions within the ray. We also modified the su-
perdomain craters to have rays.

We show the time evolution of countable crater numbers in Fig. 17,
which is similar to Fig. 13, but with our two ray models. In both cases
the magnitude of the anomalous jumps has reduced, and narrower rays
of Model 2 generate less variation in crater density than the wider rays
of Model 1. We show the output of a CTEM simulation using our narrow
ray Model 2 in Fig. 18. Both our ray geometry model and our constant
distal degradation model are highly simplified, and our runs still show
periodic large anomalous jumps. An improved model based on de-
gradation in rays requires better constraints on the size-frequency dis-
tribution of ejecta fragments in distal ray ejecta, as well as the spatial
distribution of ejecta fragments. Such modeling is beyond the scope of
the present work. However even our simplified model presented here
provides unique new constraints on distal ejecta degradation.

4. Discussion and conclusions

In this paper we used the empirically-defined crater count equili-
brium cumulative size-frequency distribution as a constraint on diffu-
sive topographic degradation of the lunar surface. We derived a new
diffusion-based analytical model that quantifies the equilibrium crater
count cumulative size-frequency distribution, given in Eq. (30). We also
performed a simulation of cratered surfaces using the Monte Carlo
landscape evolution code, CTEM. An important outcome of this com-
bined analytical and numerical modeling approach is that the numer-
ical model can be used to test the robustness of the analytical model.
With the exception of the subpixel resolution craters, the CTEM simu-
lations model the formation of each individual crater, with all of the
associated degradation processes. Therefore, CTM directly simulates
much of the complexity of real cratered landscapes, which are averaged
out in the analytical model.

We showed in Sections 3.3 and 3.4 that one of these assumptions,
that the diffusive distal degradation region could be approximated as its
spatially uniform average, lead to differences in the behavior of the
numerical model compared with the analytical model. The anomalous
jumps seen in the simulations with large values of the degradation re-
gion scale factor, fe, were less apparent in the fe = 3 cases, even if the
smoothed halos of the proximal ejecta region of each crater did not
appear to match observations. Nevertheless, the lack of anomalous
jumps in the fe = 3 allowed us to test the robustness of the analytical
model in predicting the correct equilibrium SFD, as given by Eq. (30).
To this end, we performed a suite of test simulations in which we varied
the production function slope, η, and the degradation function slope, ψ.
In all cases, the analytical model for the predicted equilibrium SFD
correctly predicted the numerically-determined equilibrium SFD.

The constraints on our model for small crater equilibrium are the
observed equilibrium SFD of crater counts in the lunar maria for craters
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Fig. 17. Similar to Fig. 13 except the degradation function follows ray patterns, rather than being uniform over a circular region. Ray model 2 has narrower rays than
ray model 1.

D.A. Minton, et al. Icarus 326 (2019) 63–87

84



with r≲ 100 m, the crater production function, and a visibility function
that can be constrained from human crater count experiments. Our
model also contains a degradation function that quantifies how much
each new crater contributes to the diffusive degradation of the lunar
surface. We discussed the development of our model and these con-
straints in Section 2. Using observations of crater counts in equilibrium
and constraints from the morphology of lunar surfaces, we derived
constraints on the degradation function in Section 3.

In Section 3.1 we tested a model similar to one developed by
Soderblom (1970) in which the majority of diffusive degradation
caused by crater formation is due to excavation and preferential
downslope ejecta deposition by primary impactors. Under the as-
sumption that the production function slope of η = 3.2 could be ex-
trapolated down to the micrometeoroid sizes of r= 6 μm craters, we
found that our predicted equilibrium SFD had crater number density
nearly an order of magnitude higher than is observed. Furthermore, due
to a phenomenon we call diffusive saturation it is impossible for any
model of crater degradation that is restricted to the proximal regime to
reach crater densities as low as the observed empirical equilibrium
value.

In Section 3.2 we explored the hypothesis that an enhanced mi-
crometeoroid population could be responsible for generating the extra
diffusive degradation required to match the observed equilibrium
value. This hypothesis fails for two different reasons. First, the required
population of enhanced micrometeoroids is many orders of magnitude
more than what is constrained from observations (see Fig. 10). Second,
the enhanced micrometeoroid population creates a non-power law
equilibrium SFD that has a shallow slope of β= 1.2 for the small cra-
ters, and transitions to a steep slope of β= 2 at the larger craters, but
with an equilibrium coefficient that is an order of magnitude too high.
Such a result is at odds with observations of the small crater equili-
brium SFD across the lunar surface (e.g. Xiao and Werner, 2015).
Therefore, we rule micrometeoroids as an important process driving the
diffusive degradation of lunar landscapes at the meter scale and larger.

We showed in Section 2.3 that an equilibrium SFD slope of β= 2
can occur for a crater size-dependent diffusive degradation model. Such
a model requires that the source population that generates diffusive
degradation originates in the same population of craters that is being
counted. In Section 3.3 we performed simulations in which each crater
generated a uniform region of diffusive degradation that scaled with

crater radius, and used empirical equilibrium as a constraint on what
we term the degradation function. We showed that the anomalous
jumps in crater density occur more frequently as the size of the de-
gradation region increases, but observations of crater removal by
proximal ejecta burial constrain our degradation function to have a
large radius, with fe ≳ 50 (see Fig. 12). The constraints that drive the
degradation region to be large are therefore in opposition to the con-
straints imposed by the anomalous jumps in crater density. These
contradictions can only be resolved if we consider that the distal de-
gradation region is a uniform circular region but is controlled by the ray
pattern seen in relatively fresh craters.

In Section 3.4 we showed that if the degradation function had a
spatially heterogeneous intensity similar to a ray pattern seen in distal
ejecta, then the problem of frequent anomalous jumps could be sup-
pressed. The heterogeneous nature of rays has also been shown to be
important for lunar regolith compositional evolution (Huang et al.,
2017), and the underlying energetic deposition that that creates rays
likely extends much farther than they appear (Elliott et al., 2018).

Our major results suggest that crater equilibrium is controlled pri-
marily by the highly energetic collision of distal ejecta fragments onto
the lunar surface. This is perhaps a rather surprising and non-intuitive
result, as the most prominent visible evidence for an impact event is in
the formation of the primary crater and its proximal ejecta. The amount
of topographic degradation caused by the distal ejecta appears rela-
tively small in comparison. By relatively small, we mean that the
quantity of degradation at any point in the distal degradation region is
orders of magnitude smaller than the amount of degradation caused by
the direct excavation of the crater, its deposition in the proximal ejecta,
and removal of craters by burial under proximal ejecta (see Fig. 12).

However, because the distal degradation occurs over a vastly larger
area than the proximal degradation, this relatively small amount of
distal degradation dominates the topographic evolution of lunar surface
features and is primarily responsible for setting the equilibrium size-
frequency distribution. This implication is consistent with recent ob-
servations of rapid regolith overturn generated by distal secondaries
from recent craters (Speyerer et al., 2016).

Our distal degradation model contains a number of simplifying as-
sumptions but constraining all of them further is beyond the scope of
the present work. For instance, we generated crater ray patterns that
were geometrically similar. However, observations of the lengths of
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Fig. 18. This is a frame of a simulation with fe = 10 but with the degradation applied over a region occupied by spatially heterogeneous rays using ray model 2
shown in Fig. 16. The low probability of a ray from a distant large crater intersecting the simulation region reduces the occurrence of large anomalous jumps.
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rays suggest that distal ejecta does scale with dimension (Elliott et al.,
2018). Yet even if the degradation and/or visibility functions have
some scale dependence, our model predicts that the equilibrium SFD
will still have β∼ 2, and therefore small deviations in the observed
equilibrium SFD away from the β= 2 could be indications of scale
dependence in the real process of how craters form and affect the pre-
existing terrain. A better degradation function could be derived from
either a model for diffusive degradation by ballistic sedimentation, or
observations of diffusive degradation within distal ejecta deposits. Such
modeling would require better constraints on the spatial and size-fre-
quency distributions of distal ejecta fragments, which are poorly un-
derstood.

Due to our results that energetic deposition of distal ejecta plays a
critical role in setting the small crater equilibrium SFD, differences in
the behavior of ejecta on different kinds of planetary terrains could
results in differences in the equilibrium SFD. For instance, observations
suggest that craters on Mercury produce proportionally more second-
aries than those of the Moon (Strom et al., 2008). This could potentially
explain why rates of diffusive degradation also appear to be faster on
Mercury (Fassett et al., 2017). Bierhaus et al. (2018) showed that there
is a great deal of variation in the production of secondary craters on
bodies across the solar system, which are influenced by target material
properties, the surface gravity, and escape velocity of each body. Also,
while we have shown that the equilibrium slope is only weakly de-
pendent on the slope of the production function, the coefficient does
depend on equilibrium slope. Therefore, the value of the equilibrium
SFD relative to geometric saturation could vary significantly for im-
pactor populations with different slope.

We also do not explicitly model secondary cratering in our CTEM
simulations, even though primary mechanism by which distal de-
gradation operates is through the formation of secondary craters.
However, the explicit modeling of secondary craters is not likely to be
necessary for the simulation of small crater equilibrium in the lunar
maria. First, on the Moon, the largest secondary craters are typi-
cally < 4% the size of the primary, and the secondary SFD typically has
a steeper slope than the primary production SFD (Melosh, 1989). For
our 1 m/pix CTEM simulation, the smallest craters we can reliably
model with enough fidelity to count are those with r > 2.5 m.
Therefore, the smallest craters that could produce countable second-
aries are those with r∼ 60 m. In our simulations, there are usually no
more than a few craters that form of this size or larger, and so including
their secondaries would add insignificant numbers of countable craters
to the surface.

The inclusion of the superdomain in our CTEM simulations allows
for the distal effects of craters larger than those that are explicitly
modeled on the domain to affect the simulation. Indeed, the inclusion of
distal degradation by the superdomain craters is critical to our model.
However, for these distant superdomain craters, explicit modeling of
secondaries is still not likely to be necessary. Even though the largest
secondaries are 4% of the primary crater size, the typical secondary
populations found in distal features, such as rays, are far smaller. For
instance, Fig. (2) of Elliott et al. (2018) shows a high resolution (50 cm/
pix) image of a portion of the distal ejecta of the r= 16 km Kepler
crater. This image shows that the energetic deposition of distal ejecta
appears to have produced large numbers of small secondaries, on the
order of 10s of m in size or less. Therefore, only the distal ejecta found
in the rays of large complex craters produce distal secondaries in the
size range of the craters of our study.

Our results are similar to the results of Hartmann and Gaskell
(1997) who studied crater equilibrium on heavily cratered terrains of
Mars. They showed that “sandblasting by subresolution secondary
craters” was needed to match the equilibrium SFD on martian terrains
based on results from cratering experiments using a three-dimensional
Monte Carlo landscape evolution code that was very similar to our
CTEM. However, Hartmann and Gaskell (1997) never quantified their
sandblasting model. Conceptually, this degradation arises from the

energetic deposition of distal ejecta, similar to ballistic sedimentation
(Oberbeck, 1975). Our results provide new quantifiable constraints on
the distal degradation that accompanies each new crater formation
event.

Our model also demonstrates an important regarding the diffusive
topographic evolution of the lunar surface that arises as a consequence
of the observation that the equilibrium SFD of small craters has a slope
of β∼ 2. An assumption adopted in many studies of the evolution of
lunar landscapes is that the topographic diffusivity, κ (which, under
most circumstances is directly proportional to the degradation rate K′

used in our models) is the same at all size scales. For instance, Fassett
and Thomson (2014) used craters in the range of 400 m < r < 2500
m to estimate an average diffusivity of the lunar surface of κ ∼ 5.5 m2/
My. However, this kind of constant and scale-independent degradation
rate results in an equilibrium SFD with a slope that is β∼ 1.2, which
significantly shallower than the observed value of β∼ 2. Therefore, the
degradation rate (or diffusivity) experienced by lunar craters must de-
pend on crater size in such a way that small craters experience a de-
gradation rate that is, on average over their lifetimes, lower than that of
larger craters.

The requirement that the lunar surface experiences this type of scale
dependence of absolute degradation rate was also suggested by Schultz
et al. (1976), who noted that small scale topographic features asso-
ciated with the emplacement of mare were apparently older than they
should have been assuming a degradation lifetime constrained from the
degradation of large craters. This result is somewhat counter-intuitive,
because even though the slope of the equilibrium SFD requires that the
diffusive degradation rate of smaller craters is lower than that of large
craters, small craters require a lower value of accumulated degradation
state in order to be fully obliterated compared with large craters.
Therefore, the lifetime of small craters will still be shorter than that of
large craters, even if the degradation rate, K′ (or diffusivity, κ) experi-
enced by smaller craters is lower than that experienced by larger cra-
ters.
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